[1]
O. Demichel, Calvo and A. Besson: Surface Recombination Velocity Measurements of Efficiently Passivated Gold-catalvzed Silicon Nanowires by a New Optical Method. Nano Letters, Vol. 7 (2010) No. 10, p.2323.
DOI: 10.1021/nl903166t
Google Scholar
[2]
M. Ni, G. Luo and L. Lu: First-principle Study of Hydrogen-p Passivated Single-crystalline Silicon Nanotubes: Electronic and Optical Properties. Nanotechnology, Vol. 50 (2007) No. 18, p.505707.
DOI: 10.1088/0957-4484/18/50/505707
Google Scholar
[3]
D. Shiri, Y. Kong and A. Buin: Strain Induced Change of Bandgap and Effective Mass in Silicon Nanowires. Applied Physics Letters, Vol. 7 (2008) No. 93, p.073114.
DOI: 10.1063/1.2973208
Google Scholar
[4]
Y. Cui and C.M. Lieber: Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science, Vol. 5505 (2001) No. 291, p.851.
DOI: 10.1126/science.291.5505.851
Google Scholar
[5]
S.W. Chung, J.Y. Yu and J.R. Heath: Silicon Nanowire Devices. Applied Physics Letters, Vol. 15 (2000) No. 76, p. (2068).
DOI: 10.1063/1.126257
Google Scholar
[6]
T. Morishita, M.J.S. Spencer and S.P. Russo: Surface Reconstruction of Ultrathin Silicon Nanosheets. Chemical Physics Letters, Vol. 4 (2011) No. 506, p.221.
DOI: 10.1016/j.cplett.2011.03.004
Google Scholar
[7]
L. Wang, K. Wu and Q.M. Dong: Effect of Surface Passivation on Optical and Electronic Properties of Ultrathin Silicon Nanosheets. Science China Information Sciences, Vol. 6 (2012) No. 55, p.1469.
DOI: 10.1007/s11432-012-4575-x
Google Scholar
[8]
J. Polonyi and K. Sailer: Effective Action and Density-functional Theory. Physical Review B, Vol. 15 (2002) No. 66, p.155113.
DOI: 10.1103/physrevb.66.155113
Google Scholar
[9]
G. Kressc and J. Furthmiiller: Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set. Computational Materials Science, Vol. 1 (1996) No. 6, p.15.
DOI: 10.1016/0927-0256(96)00008-0
Google Scholar
[10]
D. Vanderbilt: Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Physical Review B, Vol. 11 (1990) No. 41, p.7892.
DOI: 10.1103/physrevb.41.7892
Google Scholar
[11]
P. Pulay: Convergence Acceleration of Iterative Sequences, the Case of SCF Iteration. Chemical Physics Letters, Vol. 2 (1980) No. 73, p.393.
DOI: 10.1016/0009-2614(80)80396-4
Google Scholar
[12]
J.P. Perdew, K. Burke and M. Ernzerhol: Generalized Gradient Approximation Made Simple. Physical Review Letters, Vol. 18 (1996) No. 77, p.3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[13]
M. Segall, P.J.D. Lindan and M. Probert: First-principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, Vol. 11 (2002) No. 14, p.2717.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[14]
K.A. Peterson and J.T.H. Dunning: Benchmark Calculations with Correlated Molecular Wave Functions, VII, Binding Energy and Structure of the HF Dimer. Journal of Chemical Physics, Vol. 102 (1995) No. 5, p. (2032).
DOI: 10.1063/1.468725
Google Scholar
[15]
Z. Zhao and Q. Liu: Effects of Lanthanide Doping on Electronic Structures and Optical Properties of Anatase TiO2 From Density Functional Theory Calculations. Journal of Physics D: Applied Physics, Vol. 8 (2008) No. 41, p.085417.
DOI: 10.1088/0022-3727/41/8/085417
Google Scholar