Formation and Magnetic Properties of Metastable Fe92Bi8 Nanocrystalline Solid Solution

Article Preview

Abstract:

Mechanical alloying was first employed to make supersaturated solution of Fe-Be, which is immiscible under an equilibrium condition at ambient temperature. A nanocrystalline alloy was successfully produced by mechanical alloying for the composition of Fe92Bi8 that could hardly be formed by the rapid solidification of melted alloys. The changes of structure and magnetic properties of milled Fe92Bi8 with the milling time were studied by using XRD, DSC and saturation magnetization (σs) measurements. The nanocrystalline solution is of bcc structure of α-Fe after 160h milling and the crystal size reaches 8nm after 200h milling. The σs of Fe92Bi8 decreases with the increasing of the milling time. After 200h milling, the σs decreases to a value of 156Am2/kg.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

809-812

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Fukunaga, M. Mori, K. Inou and U. Mizutani: Mater. Sci. Eng. A, Vol. 134 (1991), p.863.

Google Scholar

[2] S. N. Alam: Mater. Sci. Eng. A, Vol. 433 (2006), p.161.

Google Scholar

[3] T. Raghu, R. Sundaresan, P. Ramakrishnan and T.R. Rama Mohan: Mater. Sci. Eng. A, Vol. 304-306 (2001), p.438.

Google Scholar

[4] E. Gaffet, C. Louison, M. Harmelin and F. Faudet: Mater. Sci. Eng. A, Vol. 134 (1991), p.1410.

Google Scholar

[5] F. Delogu: Acta Mater., Vol. 56 (2008), p.2344.

Google Scholar

[6] C.H. Lee and S.H. Lee: J Nanosci Nanotechnol., Vol. 11 (2007), p.4057.

Google Scholar

[7] C. Aguilar, V. de P. Martinez, J.M. Palacios, S. Ordoñez and O. Pavez: Scripta Mater., Vol. 57 (2007), p.213.

Google Scholar

[8] E.P. Yelsukov, G.A. Dorofeev, A.L. Ulyanov: Czechoslovak J. Phys., Vol. 55(2005), p.913.

Google Scholar

[9] C. Suryanarayana: Prog. Mater. Sci., Vol. 46 (2001), p.1.

Google Scholar

[10] E. Gaffet, M. Harmelin and F. Faudot: J. Alloy Compounds, Vol. 194 (1993), p.23.

Google Scholar

[11] A.R. Yavari and P.J. Desre, in A.R. Yavari (ed. ): Proc. Ordering and disordering in Alloys (Elsevier, U.K. 1992), p.414.

DOI: 10.1007/978-94-011-2886-5_43

Google Scholar

[12] J. Eckert, J.C. Holzer, C.E. Krill III and W.L. Johnson: J. Mater. Res., Vol. 7 (1992), p.1751.

Google Scholar

[13] P.H. Shingu, K.N. Ishihara, K. Uenishi, J. Kuyama and S. Nasu, in A.H. Clauer and J.J. deBarbadillo (ed. ): Solid State Powder Processing (The Minerals, Metals and Materials Society, U.S. 1990), p.21.

Google Scholar

[14] E. Gaffet: Mater. Sci. Eng., Vol. A132 (1991), p.181.

Google Scholar

[15] K. Uenishi, K.F. Kobayashi, S. Nasu, H. Hatano, K.N. Ishihara and P.H. Shingu: Z. Metallk, Vol. 83 (1992), p.132.

Google Scholar

[16] A.R. Yavari and P.J. Desre and T. Benameur: Phys. Rev. Lett., Vol. 68 (1991), p.2235.

Google Scholar

[17] O. Drbohlav and A.R. Yavari: Acta Metall. Mater., Vol. 43 (1995), p.1799.

Google Scholar

[18] R. Birringer, H. Hahn, H. Hofler, J. Karch and H. Gleiter: Diffusion and Defect Data (Trans Tech Publications, Switzerland 1988), p.17.

Google Scholar