Double Negative Optical Metamaterial with All-Dielectric Fishnet Structure

Article Preview

Abstract:

An all-dielectric fishnet metamaterial (DFM) composed of multilayer dielectric structure with periodically patterned holes is proposed to generate left-handed behavior in optical frequency region. Different from the metallic fishnet negative index metamaterial realized by coupling the neighbouring functional layers along the propagation direction, this DFM owes its simultaneous negative permeability and permittivity to the hybrid coupled resonances in the same layer. Based on this configration, a wide-band and polarization-independent negative refraction with maximum figure of merit as large as 13.85 is obtained by a silicon-based DFM at 450 nm wavelength. Simple and easy to fabricate, this concept is believed to provide an alternative route to realize high-performance negative index metamateirals at optical frequencies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

813-818

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. B. Pendry: Phys. Rev. Lett. 85, 3966 (2000).

Google Scholar

[2] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith: Science 314, 977 (2006).

DOI: 10.1126/science.1133628

Google Scholar

[3] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang: Nature 455, 376 (2008).

DOI: 10.1038/nature07247

Google Scholar

[4] R. A. Shelby, D. R. Smith, and S. Schultz: Science 292, 77 (2001).

Google Scholar

[5] C. M. Soukoulis, Past achievements and future challenges in the development of three-dimensional photonic, Nature Photonics 10. 1038 (2011).

Google Scholar

[7] Holloway, C. H., E. F. Kuester, J. Baker-Jarvis, and P. Kabos: IEEE Trans. Antennas Propag., Vol. 51, 2596-2603, (2003).

DOI: 10.1109/tap.2003.817563

Google Scholar

[8] Liu, L., J. Sun, X. Fu, J. Zhou, Q. Zhao, B. Fu, J. Liao, and D. Lippens: Progress In Electromagnetics Research, " Vol. 116, 159-170, (2011).

DOI: 10.2528/pier11033004

Google Scholar

[9] Kang, L., V. Sadaune, and D. Lippens: Progress In Electromagnetics Research, Vol. 113, 211-226, (2011).

Google Scholar

[10] L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk: Phys. Rev. Lett. 98, 157403 (2007).

Google Scholar

[11] Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li,J. Zhou, and L. Li: Phys. Rev. Lett. 101, 027402 (2008).

Google Scholar

[12] Němec H, Kužel P, Kadlec F, et al: Phys. Rev. B 79, 241108(R) (2009).

Google Scholar

[13] James C. Ginn, Igal Brener: Phys. Rev. Lett. 108, 097402 (2012).

Google Scholar

[14] B. E. Andrey, et al: Nano Lett. 12, 3749-3755 (2012).

Google Scholar

[15] K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal: Phys. Rev. Lett. 102, 133901 (2009).

DOI: 10.1103/physrevlett.102.133901

Google Scholar

[16] H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Google Scholar

[17] J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma: Phys. Rev. Lett. 99, 107401 (2007).

Google Scholar

[18] S. O'Brien and J. B. Pendry: J. Phys.: Condens. Matter 14, 4035 (2002).

Google Scholar

[19] Wheeler, M. S., J. S. Aitchison, and M. Mojahedi: J. Opt. Soc. Am. B, Vol. 27, 1083-1091, (2010).

Google Scholar

[20] Zhang, F., L. Kang, Q. Zhao, J. Zhou, and D. Lippens: New J. Phys., Vol. 14, 033031, (2012).

Google Scholar

[21] Zhang, F., Q. Zhao, J. Sun, J. Zhou, and D. Lippens: Progress In Electromagnetics Research, Vol. 124, 233-247, (2012).

Google Scholar

[22] D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis: Phys. Rev. E 71, 036617 (2005).

Google Scholar