Study on the Bionic Preparation and Properties of TiO2 as Three-Dimensional Anode Materials for Lithium-Ion Batteries

Article Preview

Abstract:

In this paper, a novel bionic preparation of anode materials for lithium-ion batteries was reported. Butterfly wings were used as a template to prepare three-dimensional (3D) TiO2 anode materials. The final product of TiO2 anode materials maintained the 3D structure of butterfly wings perfectly. The morphology and crystal structure were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM). The electrochemical performance was evaluated by galvanostatic chargedischarge tests. The results showed that the novel 3D porous structure is benefit to the high electrochemical performance

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

1507-1510

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kang, Y. S. Meng, J. Breger, C. P. Grey and G. Ceder: Science Vol. 311 (2006), p.977.

Google Scholar

[2] B. Kang and G. Ceder: Nature, Vol. 458 (2009), p.190.

Google Scholar

[3] W.J. Long, B. Dunn, R. D. Rolison, W. S. Henry, Three-dimensional battery architectures, Chem. Reviews Vol. 104(10) (2004), p.4463.

DOI: 10.1021/cr020740l

Google Scholar

[4] S.K. Cheah, E. Perre, M. Rooth, M. Fondell, A. Hårsta, L. Nyholm, M. Boman, T. Gustafsson, J. Lu, P. Simon, and K. Edström: Nano Letters. Vol. 9 (9) (2009), p.3230.

DOI: 10.1021/nl9014843

Google Scholar

[5] Y.D. Deng, B. Shen, L. Liu, Y.T. Wu, W.B. Hu: J. Phys. D. Appl. Phys. Vol. 42 (15) (2009), p.155002.

Google Scholar

[6] J. Hassoun, S. Panero, P.L. Taberna, P. Simon and B. Scrosati: High-rate, Adv. Mater. Vol. 19 (2007), p.1632.

DOI: 10.1002/adma.200602035

Google Scholar

[7] Y.D. Deng, L. Zhao, B. Shen, L. Liu, W.B. Hu: J. Appl. Phys. Vol. 100 (1) (2006), p.14304.

Google Scholar

[8] Z. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. Wang, J. Zhang, G. Graff and J. Liu: Power Sources, Vol. 192 (2009), p.588.

Google Scholar

[9] Y. Ren, L. J. Hardwick and P. G. Bruce: Angew. Chem. Int. Ed. Vol. 49 (2010), p.2570.

Google Scholar

[10] J. Ye, W. Liu, J. Cai, S. Chen, X. Zhao, H. Zhou and L. Qi: Chem. Soc. Vol. 133 (2011), p.933.

Google Scholar

[11] H. S. Zhou, C. H. Jiang, M. D. Wei, Z. M. Qi, T. Kudo and I. Honma: Power Sources. Vol. 166 (2007), p.239.

Google Scholar

[12] W. F. Zhang, J. W. Xu, C. H. Ha and B. Cao: Electrochim. Acta Vol. 52 (2007), p.8044.

Google Scholar

[13] W. Zhang, T.X. Fan, J. Ding, Q.X. Guo, H. Ogawa: Nanotechnology Vol. 17 (2006), p.840.

Google Scholar

[14] X.Y. Liu, S.M. Zhu, D. Zhang, Z.X. Chen: Mater. Lett Vol. 64(2010), p.2745.

Google Scholar

[15] J.T. Mei, X.B. Hu, D. Zhang: Mater. Review, 24(11) (2010), p.62, In Chinese.

Google Scholar