[1]
T. Attwood, V. Fung, W.W. Clark, Market opportunities for coal gasification in China, J Clean Prod, 11 (2003) 473-479.
DOI: 10.1016/s0959-6526(02)00068-9
Google Scholar
[2]
W. Wang, H. Han, Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater, Bioresour Technol, 103 (2012) 95-100.
DOI: 10.1016/j.biortech.2011.10.002
Google Scholar
[3]
L. Ma, W. Ni, Z. Li, T. Ren, Analysis of the Polygeneration System of Methanol and Electricity Based on Coal Gasification Power Engineering, 24 (2004) 451-456.
Google Scholar
[4]
T. Chmielniak, M. Sciazko, Co-gasification of biomass and coal for methanol synthesis, Appl Energy, 74 (2003) 393-403.
DOI: 10.1016/s0306-2619(02)00184-8
Google Scholar
[5]
W. Qin-ping, About Gasification and Natural Gas Transformation Combination Craft Production Methyl Alcohol Optimization, Coal Technology, 31 (2012) 245-247.
Google Scholar
[6]
H. Gai, Y. Jiang, Y. Qian, A. Kraslawski, Conceptual design and retrofitting of the coal-gasification wastewater treatment process, Chem Eng J, 138 (2008) 84-94.
DOI: 10.1016/j.cej.2007.05.032
Google Scholar
[7]
K. Kapusta, K. Stańczyk, Pollution of water during underground coal gasification of hard coal and lignite, Fuel, 90 (2011) 1927-(1934).
DOI: 10.1016/j.fuel.2010.11.025
Google Scholar
[8]
Z. Wang, X. Xu, Z. Gong, F. Yang, Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system, J Hazard Mater, 235-236 (2012) 78-84.
DOI: 10.1016/j.jhazmat.2012.07.012
Google Scholar
[9]
W. Wang, W. Ma, H. Han, H. Li, M. Yuan, Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor, Bioresour Technology, 102 (2011) 2441-2447.
DOI: 10.1016/j.biortech.2010.10.140
Google Scholar
[10]
W. Zhang, J. Ma, S. Yang, T. Zhang, Y. Li, Pretreatment of Coal Gasification Wastewater by acidification Demulsion, Chin. J. Chem. Eng., 14 (2006) 398-401.
DOI: 10.1016/s1004-9541(06)60090-6
Google Scholar
[11]
W. Wang, H. Han, M. Yuan, H. Li, Enhanced anaerobic biodegradability of real coal gasification wastewater with methanol addition, Journal of Environmental Sciences, 22 (2010) 1868-1874.
DOI: 10.1016/s1001-0742(09)60327-2
Google Scholar
[12]
S. Khadhar, T. Higashi, H. Hamdi, S. Matsuyama, A. Charef, Distribution of 16 EPA-priority polycyclic aromatic hydrocarbons (PAHs) in sludges collected from nine Tunisian wastewater treatment plants J Hazard Mater, 183 (2010) 98-102.
DOI: 10.1016/j.jhazmat.2010.06.112
Google Scholar
[13]
Information on http: /www. epa. gov/epawaste/hazard/testmethods/sw846/index. htm.
Google Scholar
[14]
Information on http: /newscenter. chemall. com. cn/NewsArticleg. asp?ArticleID=267132.
Google Scholar
[15]
Information on http: /www. epa. gov/iris/subst/0436. htm.
Google Scholar
[16]
L. Hu, C. Ge, Y. Zhang, Application of PCA-LDA to Classify the Carcinogenicity of Polycyclic Aromatic Hydrocarbons, Joural of Analytical Science, 23 (2007) 717-719. In Chinese.
Google Scholar
[17]
H. Li, J. Chen, W. Wu, X. Piao, Distribution of polycyclic aromatic hydrocarbons in different size fractions of soil from a coke oven plant and its relationship to organic carbon content, J Hazard Mater, 176 (2010) 729-734.
DOI: 10.1016/j.jhazmat.2009.11.095
Google Scholar
[18]
J. Dong, F. Li, K. Xie, Study on the source of polycyclic aromatic hydrocarbons (PAHs) during coal pyrolysis by PY–GC–MS, J Hazard Mater, 243 (2012) 80-85.
DOI: 10.1016/j.jhazmat.2012.09.073
Google Scholar
[19]
K.F. Chang, G.C. Fang, J.C. Chen, Y.S. Wu, Atmospheric polycyclic aro-matic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004, Environ Pollut, 142 (2006) 388-396.
DOI: 10.1016/j.envpol.2005.09.025
Google Scholar
[20]
C. Nisbet, P. LaGoy, Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs), Regul Toxicol Pharmacol, 16 (1992) 290-230.
DOI: 10.1016/0273-2300(92)90009-x
Google Scholar