[1]
M.J. McCarthy, T.K. Dhir, Towards maximizing the use of fly ash as a binder in concrete, Cement Concrete Res. 78 (1999) 121–132.
DOI: 10.1016/s0016-2361(98)00151-3
Google Scholar
[2]
S.V. Vassilev, C.G. Vassileva, A newapproach for the classification of coal fly ashes basedon their origin, composition, properties, and behavior, Fuel 86 (2007) 1490–1512.
DOI: 10.1016/j.fuel.2006.11.020
Google Scholar
[3]
R.S. Blissett, N.A. Rowson, A review of the multi-component utilisation of coal fly ash, Fuel 97 (2012) 1–23.
DOI: 10.1016/j.fuel.2012.03.024
Google Scholar
[4]
L. Yan, Y. Wang, H. Ma, Z. Han, Q. Zhang, Y. Chen, Feasibility of fly ash-based composite coagulant for coal washing wastewater treatment, Journal of Hazardous Materials, 203–204 (2012) 221–228.
DOI: 10.1016/j.jhazmat.2011.12.004
Google Scholar
[5]
G. Liu, H. Zhang, L. Gao, L. Zheng, Z. Peng, Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district, China, Fuel Processing Technology 85 (2004) 1635–1646.
DOI: 10.1016/j.fuproc.2003.10.028
Google Scholar
[6]
SEIDELA, SLUSZNYA, SHELEFG, ZIMMELSY. Self inhibition of aluminum leaching from coal fly ash by sulfuric acid[J]. Chemical Engineering Journal, 1999, 72: 195-207.
DOI: 10.1016/s1385-8947(99)00006-6
Google Scholar
[7]
PADILLA R, SOHN H Y. Sodium aluminate leaching and desilication in lime-soda sinter process for alumina from coal wastes [J]. Metallurgical and Materials Transactions B, 1985, 16: 707-713.
DOI: 10.1007/bf02667507
Google Scholar
[8]
MATJIE R H, BUNT J R, HEERDEN J H P. Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal [J]. Minerals Engineering, 2005, 18: 299-310.
DOI: 10.1016/j.mineng.2004.06.013
Google Scholar
[9]
HALINA M, RAMESHA S, YARMOB M A, KAMARUDIN R A. Non-hydrothermal synthesis of mesoporous materials using sodium silicate from coal fly ash [J]. Materials Chemistry and Physics, 2007, 101: 344-351.
DOI: 10.1016/j.matchemphys.2006.06.007
Google Scholar
[10]
Harry M.J. and Stewart R., Six Sigma Mechanical Design Tolerancing, Motorola Inc., (1988).
Google Scholar
[11]
Antony, J., Kumar, M., Tiwari, M.K., 2005. An application of Six Sigma methodology to reduce the engine-overheating problem in an automotive company, Proceedings of the Institution of Mechanical Engineers, Part B. J. Eng. Manufact. 219 (8), 633–646.
DOI: 10.1243/095440505x32418
Google Scholar
[12]
Kusiak A., Concurrent Engineering: Automation, tools and techniques, New York: John Wiley & Sons , Inc., (1993).
Google Scholar
[13]
He zhen, Zhang Zhihong, Liu Zixian, An Application Study of Six Sigma Tolerance Design Based on Concurrent Quality Engineering (in china), China Mechanical Engineering, 2005, Vol. 16, No. 9: 827-830.
Google Scholar
[14]
HENBGE A, ACKERA J, MÜLLER C. Titrimetric determination of silicon dissolved in concentrated HF–HNO3-etching solutions [J]. Talanta, 2006, 68: 581-585.
DOI: 10.1016/j.talanta.2005.04.049
Google Scholar