Review on Cyanogenic Bacteria for Gold Recovery from E-Waste

Article Preview

Abstract:

Electronic waste (E-waste) is recognized as a new emerging and fast-growing waste stream, and may be considered as a secondary ore for the recovery of some precious metals (such as gold). A number of control technologies have been conducted for gold recovery, and in which, cyanidation is widely used. In recent years, an alternate approach to the gold cyanidation process is being considered, in which the aim is to replace with the microorganism, specifically cyanogenic bacteria such as Chromobacterium violaceum, Pseudomonas fluorescens, Pseudomonas aeruginosa and Escherichia coli. All these species can produce cyanide ions and dissolve gold in their metabolic processes. The mechanism is a combination of chemical knowledge (interaction of metals and cyanide) with microbiological principles (biological cyanide formation) regarding metal solubilization from waste printed circuit boards and the formation of water-soluble cyanide complexes. And the activity of cyanogenic bacteria is affected by many factors, such as pH, dissolved oxygen pulp density and nutriment, especially several metal ions, which can serve as the catalyst in the metabolism. Now researchers are devoting themselves to looking for the proper conditions, not only from the bacteria themselves, but also the combination of many methods, which can reinforce the cyanide generation and improve gold leaching efficiency. At present the reported leaching efficiency of gold with cyanogenic is approximately 70%. As the continuous optimization of conditions, the industrial application can be expected soon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

355-367

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] United Nations Environment Programme, 2012. Urgent need to prepare developing countries for surges in e-waste. http: /www. unep. org/Documents. Multilingual/Default. asp?DocumentID=612&ArticleID=6471. Accessed 15 March (2012).

Google Scholar

[2] T.G. Townsend, Environmental issues and management strategies for waste electronic and electrical equipment, Journal of Air & Waste Management Association. 61 (2011) 587-610.

DOI: 10.3155/1047-3289.61.6.587

Google Scholar

[3] D. Pant, D. Joshi, M.K. Upreti, R.K. Kotnala, Chemical and biological extraction of metals present in E waste: A hybrid technology, Waste Management. 32 (2012) 979-990.

DOI: 10.1016/j.wasman.2011.12.002

Google Scholar

[4] C. Davis, S. Heart, Electronic waste: the local government perspective in Queensland, Australian Resources Conservation Recycling. 52(8-9) (2008) 1031-1039.

DOI: 10.1016/j.resconrec.2008.04.001

Google Scholar

[5] S. Syed, Recovery of gold from secondary sources-A review, Hydrometallurgy. 115-116 (2012) 30-51.

DOI: 10.1016/j.hydromet.2011.12.012

Google Scholar

[6] Tsydenova, M. Bengtsson, Chemical hazards associated with treatment of waste electrical and electronic equipment, Waste Management. 31 (2011) 45-58.

DOI: 10.1016/j.wasman.2010.08.014

Google Scholar

[7] J. Cui, L. Zhang, Metallurgical recovery of metals from electronic waste: a review, Journal of Hazardous Materials. 158 (2008) 228-256.

DOI: 10.1016/j.jhazmat.2008.02.001

Google Scholar

[8] J.K. Pradhan, S. Kumar, Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp, Waste Management & Research. 30(11) (2012) 1151-1159.

DOI: 10.1177/0734242x12437565

Google Scholar

[9] S. Ilyas, M.A. Anwar, S.B. Niazi, M.A. Ghauri, Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria, Hydrometallurgy. 88 (2007) 180-188.

DOI: 10.1016/j.hydromet.2007.04.007

Google Scholar

[10] M. Barclay, V.A. Tett, C.J. Knowles, Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions, Enzyme and Microbial Technology. 23 (1998) 321-330.

DOI: 10.1016/s0141-0229(98)00055-6

Google Scholar

[11] M.A. Faramarzi, M. Stagars, E. Pensini, W. Krebs, H. Brandl, Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum, Journal of Biotechnology. 113 (2004) 321-326.

DOI: 10.1016/j.jbiotec.2004.03.031

Google Scholar

[12] T.I. Mudder, M.M. Botz, Cyanide and society: a critical review, The European Journal of Mineral Processing and Environmental Protection. 4(1) (2004) 62-74.

Google Scholar

[13] M.D. Urán, A.F. Aljoni-Alario, N.D. Urán, Chromobacterium violaceum and its important metabolites-review, Folia Microbiol. 55 (6) (2010) 535-547.

DOI: 10.1007/s12223-010-0088-4

Google Scholar

[14] C. Blumer, D. Haas, Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis, Arch Microbiol. 173 (2000) 170–177.

DOI: 10.1007/s002039900127

Google Scholar

[15] C.J. Knowles, A.W. Bunch, Microbial cyanide metabolism, Adv. Microb. Physiol. 27 (1986) 73-111.

Google Scholar

[16] M.A. Faramarzi, H. Brandl, Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida, FEMS Microbiol. Lett. 259 (2006) 47-52.

DOI: 10.1111/j.1574-6968.2006.00245.x

Google Scholar

[17] D.E. Barnes, P.J. Wright, S.M. Graham, E.A. Jones-Watson, Techniques for the determination of cyanide in a process environment: a review, Geostand Newslett. 24 (2000) 183-195.

DOI: 10.1111/j.1751-908x.2000.tb00770.x

Google Scholar

[18] T.B. Creczynski-Pasa, R.V. Antônio, Energetic metabolism of Chromobacterium violaceum, Genetics and Molecular Research. 26(3) (2004) 162-166.

Google Scholar

[19] D.T. Chi, J.C. Lee, B.D. Pandey, J. Jeong, K. Yoo, T.H. Huynh, Bacterial cyanide generation in the presence of metal ions (Na+, Mg2+, Fe2+, Pb2+) and gold bioleaching from waste PCBs, Journal of Chemical Engineering of Japan. 44(10) (2011).

DOI: 10.1252/jcej.10we232

Google Scholar

[20] Y. Kita, H. Nishikawa, T. Takemoto, Effects of cyanide and dissolved oxygen concentrationon biological Au recovery, Journal of Biotechnology. 124 (2006) 545-551.

DOI: 10.1016/j.jbiotec.2006.01.038

Google Scholar

[21] H. Brandl, S. Lehmann, M.A. Faramarzi, D. Martinelli, Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms, Hydrometallurgy. 94 (2008) 14-17.

DOI: 10.1016/j.hydromet.2008.05.016

Google Scholar

[22] D.T. Chi, J.C. Lee, B.D. Pandey, K. Yoo, J. Jeong, Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium, Minerals Engineering. 24 (2011) 1219-1222.

DOI: 10.1016/j.mineng.2011.05.009

Google Scholar

[23] Y. Kita, H. Nishikawa, M. Ike, T. Takemoto, Low environmentally impact recovery of gold using cyanide producing bacteria, Environmentally Conscious Design and Inverse Manufacturing. (2005) 935-938.

DOI: 10.1109/ecodim.2005.1619383

Google Scholar

[24] Y. Kita, H. Nishikawa, M. Ike, T. Takemoto, Enhancement of Au dissolution by microorganisms using an accelerating cathode reaction, Metallurgical And Materials Transactions B-Process Metallurgy and Materials Processing Science. 40(1) (2008).

DOI: 10.1007/s11663-008-9177-z

Google Scholar

[25] E.N. Lawson, M. Barkhuizen, D.W. Dew, Gold Solubilisation by the cyanide producing bacteria Chromobacterium violaceum, Proc. of Int. biohydro-metallurgy Symp., biohydrometallurgy and the environment towards the mining of 21st century, Process Metallurgy. 9, Part 1, Madrid, Spain, 1999, pp.239-246.

DOI: 10.1016/s1572-4409(99)80023-6

Google Scholar

[26] V. A. Pham, Y.P. Ting, Gold bioleaching of electronic waste by cyanogenic bacteria and its enhancement with bio-oxidation, Advanced Materials Research. 71-73 (2009) 661-664.

DOI: 10.4028/www.scientific.net/amr.71-73.661

Google Scholar

[27] M.A. Faramarzi, H. Brandl, Mobilization of copper and nickel from coins by HCN-forming Pseudomonas plecoglossicida and Chromobacterium violaceum, Journal of Biotechnology. 136 (2008) S703.

DOI: 10.1016/j.jbiotec.2008.07.1632

Google Scholar

[28] J. Baxter, S.P. Cummings, The impact of bioaugmentation on metal cyanide degradation and soil bacteria community structure, Biodegradation. 17 (2006) 207–217.

DOI: 10.1007/s10532-005-4219-6

Google Scholar

[29] S.C. Campbell, G.J. Olson, T.R. Clark, G. McFeters, Biogenic production of cyanide and its application to gold recovery. Journal of Industrial Microbiology & Biotechnology. 26 (2001)134-139.

DOI: 10.1038/sj.jim.7000104

Google Scholar

[30] R. Cipollone, P. Ascenzi, P. Tomao, F. Imperi, P. Visca, Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa rhodanese, J Mol Microbiol Biotechnol. 15 (2008)199-211.

DOI: 10.1159/000121331

Google Scholar

[31] T. Rudrappa, R.E. Splaine, M.L. Biedrzycki, H.P. Bais, Cyanogenic Pseudomonads influence multitrophic interactions in the rhizosphere, PLoS ONE. 3(4) (2008) 1-11.

DOI: 10.1371/journal.pone.0002073

Google Scholar

[32] R. Harris, C.J. Knowles, Isolation and growth of a Pseudomonas species that utilises cyanide as a source of nitrogen, J. Gen. Microbiol. 129 (1983) 1005-1011.

DOI: 10.1099/00221287-129-4-1005

Google Scholar

[33] D.A. Kunz, O. Nagappan, J. Silva-Avalos, G.T. deLong, Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: Evidence for multiple pathways of metabolic conversion, Appl. Environ. Microbiol. 58 (1992).

DOI: 10.1128/aem.58.6.2022-2029.1992

Google Scholar

[34] W. Lenney, F.J. Gilchrist, Pseudomonas aeruginosa and cyanide production, Eur Respir J. 37 (2011) 482-483.

DOI: 10.1183/09031936.00122810

Google Scholar

[35] M.J. Logsdon, K. Hagelstein, T.I. Mudder, The Management of Cyanide in Gold Extraction. ICME Publications, Canada, Ottawa, (1999).

Google Scholar

[36] S. Foucher, F. Battaglia-Brunet, Hugues, Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyriteina suspended-solids bubble column and comparison with a mechanically agitated reactor, Hydrometallurgy. 71 (1-2) (2003).

DOI: 10.1016/s0304-386x(03)00142-7

Google Scholar

[37] P. A. Castri, Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa, Can. J. Microbiol. 21 (1975) 613-618.

DOI: 10.1139/m75-088

Google Scholar

[38] R.A. Askeland, S.M. Morrison, Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa, Appl Environ Microbiol. 45 (1983) 1802-1807.

DOI: 10.1128/aem.45.6.1802-1807.1983

Google Scholar

[39] C. Blumer, D. Hass, Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis, Archives of Microbiology. 173 (2000) 170–177.

DOI: 10.1007/s002039900127

Google Scholar

[40] H. Brandl, R. Bosshard, M. Wegmann, Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi, Hydrometallurgy. 59 (2001): 319-326.

DOI: 10.1016/s0304-386x(00)00188-2

Google Scholar

[41] C.M. Zammit, N. Cook, J Brugger, C.L. Ciobanu, F. Reith, The future of biotechnology for gold exploration and processing, Minerals Engineering. 32 (2012) 45–53.

DOI: 10.1016/j.mineng.2012.03.016

Google Scholar

[42] J.G. Yang, Y.T. Wu, J. Li, Recovery of ultrafine copper particles from metal components of waste printed circuit boards, Hydrometallurgy. 121-124 (2012) 1-6.

DOI: 10.1016/j.hydromet.2012.04.015

Google Scholar