[1]
United Nations Environment Programme, 2012. Urgent need to prepare developing countries for surges in e-waste. http: /www. unep. org/Documents. Multilingual/Default. asp?DocumentID=612&ArticleID=6471. Accessed 15 March (2012).
Google Scholar
[2]
T.G. Townsend, Environmental issues and management strategies for waste electronic and electrical equipment, Journal of Air & Waste Management Association. 61 (2011) 587-610.
DOI: 10.3155/1047-3289.61.6.587
Google Scholar
[3]
D. Pant, D. Joshi, M.K. Upreti, R.K. Kotnala, Chemical and biological extraction of metals present in E waste: A hybrid technology, Waste Management. 32 (2012) 979-990.
DOI: 10.1016/j.wasman.2011.12.002
Google Scholar
[4]
C. Davis, S. Heart, Electronic waste: the local government perspective in Queensland, Australian Resources Conservation Recycling. 52(8-9) (2008) 1031-1039.
DOI: 10.1016/j.resconrec.2008.04.001
Google Scholar
[5]
S. Syed, Recovery of gold from secondary sources-A review, Hydrometallurgy. 115-116 (2012) 30-51.
DOI: 10.1016/j.hydromet.2011.12.012
Google Scholar
[6]
Tsydenova, M. Bengtsson, Chemical hazards associated with treatment of waste electrical and electronic equipment, Waste Management. 31 (2011) 45-58.
DOI: 10.1016/j.wasman.2010.08.014
Google Scholar
[7]
J. Cui, L. Zhang, Metallurgical recovery of metals from electronic waste: a review, Journal of Hazardous Materials. 158 (2008) 228-256.
DOI: 10.1016/j.jhazmat.2008.02.001
Google Scholar
[8]
J.K. Pradhan, S. Kumar, Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp, Waste Management & Research. 30(11) (2012) 1151-1159.
DOI: 10.1177/0734242x12437565
Google Scholar
[9]
S. Ilyas, M.A. Anwar, S.B. Niazi, M.A. Ghauri, Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria, Hydrometallurgy. 88 (2007) 180-188.
DOI: 10.1016/j.hydromet.2007.04.007
Google Scholar
[10]
M. Barclay, V.A. Tett, C.J. Knowles, Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions, Enzyme and Microbial Technology. 23 (1998) 321-330.
DOI: 10.1016/s0141-0229(98)00055-6
Google Scholar
[11]
M.A. Faramarzi, M. Stagars, E. Pensini, W. Krebs, H. Brandl, Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum, Journal of Biotechnology. 113 (2004) 321-326.
DOI: 10.1016/j.jbiotec.2004.03.031
Google Scholar
[12]
T.I. Mudder, M.M. Botz, Cyanide and society: a critical review, The European Journal of Mineral Processing and Environmental Protection. 4(1) (2004) 62-74.
Google Scholar
[13]
M.D. Urán, A.F. Aljoni-Alario, N.D. Urán, Chromobacterium violaceum and its important metabolites-review, Folia Microbiol. 55 (6) (2010) 535-547.
DOI: 10.1007/s12223-010-0088-4
Google Scholar
[14]
C. Blumer, D. Haas, Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis, Arch Microbiol. 173 (2000) 170–177.
DOI: 10.1007/s002039900127
Google Scholar
[15]
C.J. Knowles, A.W. Bunch, Microbial cyanide metabolism, Adv. Microb. Physiol. 27 (1986) 73-111.
Google Scholar
[16]
M.A. Faramarzi, H. Brandl, Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida, FEMS Microbiol. Lett. 259 (2006) 47-52.
DOI: 10.1111/j.1574-6968.2006.00245.x
Google Scholar
[17]
D.E. Barnes, P.J. Wright, S.M. Graham, E.A. Jones-Watson, Techniques for the determination of cyanide in a process environment: a review, Geostand Newslett. 24 (2000) 183-195.
DOI: 10.1111/j.1751-908x.2000.tb00770.x
Google Scholar
[18]
T.B. Creczynski-Pasa, R.V. Antônio, Energetic metabolism of Chromobacterium violaceum, Genetics and Molecular Research. 26(3) (2004) 162-166.
Google Scholar
[19]
D.T. Chi, J.C. Lee, B.D. Pandey, J. Jeong, K. Yoo, T.H. Huynh, Bacterial cyanide generation in the presence of metal ions (Na+, Mg2+, Fe2+, Pb2+) and gold bioleaching from waste PCBs, Journal of Chemical Engineering of Japan. 44(10) (2011).
DOI: 10.1252/jcej.10we232
Google Scholar
[20]
Y. Kita, H. Nishikawa, T. Takemoto, Effects of cyanide and dissolved oxygen concentrationon biological Au recovery, Journal of Biotechnology. 124 (2006) 545-551.
DOI: 10.1016/j.jbiotec.2006.01.038
Google Scholar
[21]
H. Brandl, S. Lehmann, M.A. Faramarzi, D. Martinelli, Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms, Hydrometallurgy. 94 (2008) 14-17.
DOI: 10.1016/j.hydromet.2008.05.016
Google Scholar
[22]
D.T. Chi, J.C. Lee, B.D. Pandey, K. Yoo, J. Jeong, Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium, Minerals Engineering. 24 (2011) 1219-1222.
DOI: 10.1016/j.mineng.2011.05.009
Google Scholar
[23]
Y. Kita, H. Nishikawa, M. Ike, T. Takemoto, Low environmentally impact recovery of gold using cyanide producing bacteria, Environmentally Conscious Design and Inverse Manufacturing. (2005) 935-938.
DOI: 10.1109/ecodim.2005.1619383
Google Scholar
[24]
Y. Kita, H. Nishikawa, M. Ike, T. Takemoto, Enhancement of Au dissolution by microorganisms using an accelerating cathode reaction, Metallurgical And Materials Transactions B-Process Metallurgy and Materials Processing Science. 40(1) (2008).
DOI: 10.1007/s11663-008-9177-z
Google Scholar
[25]
E.N. Lawson, M. Barkhuizen, D.W. Dew, Gold Solubilisation by the cyanide producing bacteria Chromobacterium violaceum, Proc. of Int. biohydro-metallurgy Symp., biohydrometallurgy and the environment towards the mining of 21st century, Process Metallurgy. 9, Part 1, Madrid, Spain, 1999, pp.239-246.
DOI: 10.1016/s1572-4409(99)80023-6
Google Scholar
[26]
V. A. Pham, Y.P. Ting, Gold bioleaching of electronic waste by cyanogenic bacteria and its enhancement with bio-oxidation, Advanced Materials Research. 71-73 (2009) 661-664.
DOI: 10.4028/www.scientific.net/amr.71-73.661
Google Scholar
[27]
M.A. Faramarzi, H. Brandl, Mobilization of copper and nickel from coins by HCN-forming Pseudomonas plecoglossicida and Chromobacterium violaceum, Journal of Biotechnology. 136 (2008) S703.
DOI: 10.1016/j.jbiotec.2008.07.1632
Google Scholar
[28]
J. Baxter, S.P. Cummings, The impact of bioaugmentation on metal cyanide degradation and soil bacteria community structure, Biodegradation. 17 (2006) 207–217.
DOI: 10.1007/s10532-005-4219-6
Google Scholar
[29]
S.C. Campbell, G.J. Olson, T.R. Clark, G. McFeters, Biogenic production of cyanide and its application to gold recovery. Journal of Industrial Microbiology & Biotechnology. 26 (2001)134-139.
DOI: 10.1038/sj.jim.7000104
Google Scholar
[30]
R. Cipollone, P. Ascenzi, P. Tomao, F. Imperi, P. Visca, Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa rhodanese, J Mol Microbiol Biotechnol. 15 (2008)199-211.
DOI: 10.1159/000121331
Google Scholar
[31]
T. Rudrappa, R.E. Splaine, M.L. Biedrzycki, H.P. Bais, Cyanogenic Pseudomonads influence multitrophic interactions in the rhizosphere, PLoS ONE. 3(4) (2008) 1-11.
DOI: 10.1371/journal.pone.0002073
Google Scholar
[32]
R. Harris, C.J. Knowles, Isolation and growth of a Pseudomonas species that utilises cyanide as a source of nitrogen, J. Gen. Microbiol. 129 (1983) 1005-1011.
DOI: 10.1099/00221287-129-4-1005
Google Scholar
[33]
D.A. Kunz, O. Nagappan, J. Silva-Avalos, G.T. deLong, Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: Evidence for multiple pathways of metabolic conversion, Appl. Environ. Microbiol. 58 (1992).
DOI: 10.1128/aem.58.6.2022-2029.1992
Google Scholar
[34]
W. Lenney, F.J. Gilchrist, Pseudomonas aeruginosa and cyanide production, Eur Respir J. 37 (2011) 482-483.
DOI: 10.1183/09031936.00122810
Google Scholar
[35]
M.J. Logsdon, K. Hagelstein, T.I. Mudder, The Management of Cyanide in Gold Extraction. ICME Publications, Canada, Ottawa, (1999).
Google Scholar
[36]
S. Foucher, F. Battaglia-Brunet, Hugues, Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyriteina suspended-solids bubble column and comparison with a mechanically agitated reactor, Hydrometallurgy. 71 (1-2) (2003).
DOI: 10.1016/s0304-386x(03)00142-7
Google Scholar
[37]
P. A. Castri, Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa, Can. J. Microbiol. 21 (1975) 613-618.
DOI: 10.1139/m75-088
Google Scholar
[38]
R.A. Askeland, S.M. Morrison, Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa, Appl Environ Microbiol. 45 (1983) 1802-1807.
DOI: 10.1128/aem.45.6.1802-1807.1983
Google Scholar
[39]
C. Blumer, D. Hass, Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis, Archives of Microbiology. 173 (2000) 170–177.
DOI: 10.1007/s002039900127
Google Scholar
[40]
H. Brandl, R. Bosshard, M. Wegmann, Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi, Hydrometallurgy. 59 (2001): 319-326.
DOI: 10.1016/s0304-386x(00)00188-2
Google Scholar
[41]
C.M. Zammit, N. Cook, J Brugger, C.L. Ciobanu, F. Reith, The future of biotechnology for gold exploration and processing, Minerals Engineering. 32 (2012) 45–53.
DOI: 10.1016/j.mineng.2012.03.016
Google Scholar
[42]
J.G. Yang, Y.T. Wu, J. Li, Recovery of ultrafine copper particles from metal components of waste printed circuit boards, Hydrometallurgy. 121-124 (2012) 1-6.
DOI: 10.1016/j.hydromet.2012.04.015
Google Scholar