Study on UV–Visible Spectra Characteristic of Dissolved Organic Matter during Municipal Solid Waste Composting

Article Preview

Abstract:

This paper aims to characterize the evolution of organic matter during the composting of municipal solid waste (MSW). During the 46-day composting process, six samples with different composting time were collected from Songjiang Solid Waste Biological Treatment Plant in Shanghai, China. Dissolved organic matter (DOM) was extracted by ultra-pure water, and the UV-Visible (UV-Vis) spectra of DOM were scanned and investigated. The results showed that, during the composting process, non-humus substances in DOM were gradually transformed into humus substances, the aromatization, molecular weight and humification of humus substances increased. Correlation analysis showed that the absorbance value at 280 nm (SUVA280), and the area of 226~400 nm (A226~400) correlated positively with each other. The dissolved organic carbon (DOC) concentration exhibited a negative correlation with the parameters S275~295, SUVA280 and A200~226, and the correlation coefficients between the DOC content and the A220~226 value was the best (r= -0.976, P=0.001). The absorbance ratio bewteen 465 and 665 nm (E465/E665) showed a significant correlation with SUVA280 (r=-0.892, P=0.017), A226~400 (r=-0.909, P=0.012) and DOC (r=0.840, P=0.036). The absorbance ratio of 250 to 365 nm (E250/E365) correlated significantly with DOC (r=-0.880, P=0.021), and showed no correlation with the other parameters. Absorption curve slope in the range of 275~295nm (S275~295) showed a significantly positive correlation with the DOC content (r=0.961, P=0.002). Among all parameters, the A200~226, A226~400 and S275~295 values reflected compost maturity best.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

840-849

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.Z. Cao, J.P. Chen, H.C. Gao, H. Liu, J.Y. Luo. Some attentive technological and economical problems to waste composting. Environ. Protec, (2002).

Google Scholar

[2] U. Tomati, E. Madejon, E. Galli. Evolution of humic acid molecular weight as an index of compost stability. Compost Sci. Util., 8(2000) 108-115.

DOI: 10.1080/1065657x.2000.10701756

Google Scholar

[3] A. Lguirati, G. Ait Baddi, A. El Mousadik, V. Gilard, J.C. Revel, M. Hafidi. Analysis of humic acids from aerated and non-aerated urban landfill composts. Int. Biodeterior. Biodegrad., 56(2005) 8-16.

DOI: 10.1016/j.ibiod.2005.03.004

Google Scholar

[4] M. Gomez-Brandon, C. Lazcano, J. Dominguez. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere, 70(2008) 436-444.

DOI: 10.1016/j.chemosphere.2007.06.065

Google Scholar

[5] K. Kumada. Chemistry of Soil Organic Matter. Japan: Japan Scientific Societies Press, (1987) 17-30.

Google Scholar

[6] Y. Chen, N. Senesi, M. Schnitzer. Information provided on humic substances by E465/E665 rations. Soil Sci. Soc. Am. J., 41(1977) 352-358.

DOI: 10.2136/sssaj1977.03615995004100020037x

Google Scholar

[7] F.J. Stevenson. Humus chemistry: genesis, composition, reactions. Soil Sci. Soc. Am. J., 46(1982) 265-270.

Google Scholar

[8] M. Fuentes, G. Gonzulez-Gaitano, Jose M., et al. The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Org. Geochem., 37(2006) 1949-(1959).

DOI: 10.1016/j.orggeochem.2006.07.024

Google Scholar

[9] Y.P. Chin, G.R. Aiken, O. Loughlin E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol., 28(1994) 1853–1858.

DOI: 10.1021/es00060a015

Google Scholar

[10] J. Peuravuori, K. Pihlaja. Isolation and characterization of natural organic matter from lake water: comparison of isolation with solid adsorption and tangential membrane filtration. Environ. Int., 23(1997) 441-451.

DOI: 10.1016/s0160-4120(97)00049-4

Google Scholar

[11] D.M.B.P. Milori, L. Martin-Neto, C. Bayer, J. Mielniczuk, V.S. Bagnato. Humification degree of soil humic acids determined by fluorescence spectroscopy. Soil Sci., 167(2002) 739-749.

DOI: 10.1097/00010694-200211000-00004

Google Scholar

[12] N.V. Hue, J. Liu. Predicting compost stability. Compost Sci. Util., 3(1995) 8-15.

Google Scholar

[13] M.P. Bernal, C.M.A. Paredes, J. Cegarra. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol., 63(1998) 91-99.

DOI: 10.1016/s0960-8524(97)00084-9

Google Scholar

[14] M.X. Li, X.S. He, J. Liu, B.D. Xi, Y. Zhao, Z.M. Wei, Y.H. Jiang, J. Su, C.M. Hu. Study on characteristic ultraviolet absorbance spectroscopic of dissolved organic matter during composting of chicken manure. Spectrosc. Spect. Anal., 30(2010).

Google Scholar

[15] J.S. Zhang, J. Cao, S. Tao. Spatial variation of UV-Vis spectroscopy of water soluble organic carbon in eastern China. Acta Pedologica Sinica, 40(2003) 118-122.

Google Scholar

[16] Y.S. Xie, W. Wang, G.H. Yao. An analysis of ultraviolet integral absorption spectrum of water. J. Guangxi Normal University, 28(2011) 43-47.

Google Scholar

[17] S.L. Huo, B.D. Xi, H.C. Yu, L.S. He, S.L. Fan, H.L. Liu. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages. J. Environ. Sci., 20(2008) 492-498.

DOI: 10.1016/s1001-0742(08)62085-9

Google Scholar

[18] B.D. Xi, X.S. He, Y. Zhao, D. Wei, Z.M. Wei, Y.H. Jiang, M.X. Li, T.X. Yang. Spectroscopy characterization of landfill stabilization process. Spectrosc. Spect. Anal., 29(2009) 2475-2479.

Google Scholar

[19] H. Zhang, Q.J. Peng, Y.M. Li, R. Zhang. Modern Spectral Analysis of Organic Matters. Beijing: Chemical Industry Press, 2005, 228.

Google Scholar

[20] L.Y. Wang, F.C. Wu, R.Y. Zhang, W. Li, H.Q. Liao. Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau. J. Environ. Sci., 21(2009) 581–588.

DOI: 10.1016/s1001-0742(08)62311-6

Google Scholar

[21] M. Schnitzer. Organic matter characterization, 1982. In: AL Page et al. (ed) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. (1996).

Google Scholar

[22] G.V. Korshin, C.W. Li, M.M. Benjamin. Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory. Water Res., 31(1997) 1787-1795.

DOI: 10.1016/s0043-1354(97)00006-7

Google Scholar

[23] K.H. Kang, H.S. Shin, H. Park. Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Res., 36(2002) 4023-4032.

DOI: 10.1016/s0043-1354(02)00114-8

Google Scholar

[24] L.L. Fialho, W.T.L.D. Silva, D.M.B.P. Milori, M.L. Simões, L. Martin-Neto. Characterization of organic matter from composting of different residues by physicochemical and spectroscopic methods. Bioresour. Technol., 101(2010) 1927-(1934).

DOI: 10.1016/j.biortech.2009.10.039

Google Scholar

[25] J. Kang, Z.Q. Zhang, M. Shao, B. Wang. Relationship of Spectroscopic Characteristics of Humic Acid and Compost Maturity during Composting of Sewage Sludge. Acta Agriculturae Boreali-occidental is Sincia, 19(2010) 181-185.

Google Scholar

[26] X.H. Zhan, L.X. Zhou, Q.R. Shen, H.Z. Huang. The spectroscopic changes characterizations of dissolved organic matter during composting sludge. Acta Sci. Circum., 21(2001) 470-474.

Google Scholar

[27] N. Gressel, A.E. McGrath, J.G. McColl, R.F. Powers. Spectroscopy of aqueous extracts of forest litter I. Suitability of methods. Soil Sci Soc Am J, 59(1995) 1715-1723.

DOI: 10.2136/sssaj1995.03615995005900060030x

Google Scholar

[28] P. Weaterhoff, D. Anning. Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization. J. Hydro., 236(2000) 202-222.

DOI: 10.1016/s0022-1694(00)00292-4

Google Scholar

[29] J.R. Helms, A. Stubbins, J.D. Ritchie, E.C. Minor, D.J. Kieber, K. Mopper. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr., 53(2008).

DOI: 10.4319/lo.2008.53.3.0955

Google Scholar

[30] J. Hur, D.H. Lee, H.S. Shin. Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments. Org. Geochem., 40(2009) 1091-1099.

DOI: 10.1016/j.orggeochem.2009.07.003

Google Scholar

[31] X.S. He, B.D. Xi, Z.M. Wei, X.J. Guo, M.X. Li, D. An, H.L. Liu. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere, 84(2011) 541-548.

DOI: 10.1016/j.chemosphere.2010.10.057

Google Scholar

[32] Z.H. Shao, P.J. He, D.Q. Zhang, L.M. Shao. Characterization of water-extractable organic matter during the biostabilization of municipal solid waste. J. Hazard. Control, 32(2010)21 69-73.

DOI: 10.1016/j.jhazmat.2008.09.035

Google Scholar