Effects of Ball Milling on the Electrochemical Performance of Li2FeSiO4 Cathode

Article Preview

Abstract:

The Li2FeSiO4 cathode materialwas prepared via a solid state reaction method and subsequently heat treated at around 350°C and 700O C in Ar2 atmosphere. High energy ball milling method is applied on the resulting powder with carbon additives to further modify the structure and to enhance the electrochemical performance. The structure and morphology of the prepared Li2FeSiO4 powder was characterized by means of X-Ray Diffractometry (XRD) and Field-Emission Scanning Electron Microscope (FESEM). The morphological changes of the Li2FeSiO4 resultedfrom different ball milling duration strongly influences the electrochemical performance of this cathode material. The Li2FeSiO4 powder which was ball-milled for 48h delivered in the best electrochemical performance with a discharge capacity of 65.4 mAh/g when cycled between 1.5 and 4.8V vs. Li/Li+. Particulate morphology observed from FESEM images showed that samples that were ball-milled for 48h have reduced agglomeration compared to that ball-milled for 24h. The larger surface area for reaction with Li+ improves the discharge capacity of the Li2FeSiO4 cathode material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-20

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Nyten, A. Abouimrane, S. B. Lee, I. C. Jang, H. H. Lim, G. J. Par, M. Yoshio and Y. S. Lee (2005), ElectrochemCommun., 7(2)

Google Scholar

[2] V. Aravindan, K. Karthikeyan, S. Ravi, S. Amaresh, W. S. kim and Y. S. Lee (2010), J. Mater. Chem, 20(35).

Google Scholar

[3] H. Hao, J. Wang, J. Liu, T. Huang, A. Yu (2011) J. Power Sources 210(2010).

Google Scholar

[4] M. Dahbi, S. Urbonaite, T. Gustafsson (2012), J. Power Sources 205(2012).

Google Scholar

[5] C. Deng, S. Zhang, S. Y. Yang, B. L. Fu, L. Ma (2010), J. Power Sources 196(2011).

Google Scholar

[6] D. Lv, W. Wen. X. Huang, J. Bai, J. Mi, S. Wu, Y. Yang (2011), J. Mater. Chem 21(2011)

Google Scholar

[7] A. Nyten, S. Kamali, L. Hanggstorm, T. Gustafsson, J. O. Thomas (2006), J. Mater. Chem.16(2006).

Google Scholar

[8] R. Dominko (2008), J. Power Sources 184(2008)

Google Scholar

[9] M. E. Arroyo-de Dompablo, R. Dominko, J. M. Gallardo-Amores, L. Dupont, G. Mali, H. Ehrenberg, J. Jamnik, E. Moran (2008), Chem. Mater 20(2008).

DOI: 10.1021/cm801036k

Google Scholar

[10] Y. H. Chen, Y. M. Zhao, X. N. An, J. M. Liu, Y. Z. Dong (2009), Electroche Acta.54(200)

Google Scholar