Structural and Photoluminescence Properties of Co-Doped ZnO Nanorods Prepared by RF-Magnetron Sputtering

Article Preview

Abstract:

Cobalt-doped ZnO nanorods were successfully synthesized on SiO2/Si substrate using RF-magnetron sputtering at room temperature. The structural, morphological, and photoluminescence (PL) properties of undoped and Co-doped ZnO nanostructure were characterized using X-ray diffraction, field emission-scanning electron microscopy, and PL analyses. The results showed that Co2+ replaces Zn2+ in the ZnO lattice without changing the wurtzite structure. As the Co concentration increases, the structure becomes highly crystalline and is gradually converted into nanorods with no extra phases. The as-synthesized nanorod arrays are dense and vertically grow on the SiO2 substrate. The arrays exhibit diameters of approximately 56.89 nm as well as lengths that range from 247.9 nm to 527.5 nm. PL analysis reveals that the ultraviolet (UV) emission intensity decreases and exhibits a blue shift as the Co doping level is increase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-37

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Wang, P. Li, H. Liu, J. Li, Y. Wei. (2010). The structure and optical properties of ZnO nanocrystals dependence on Co-doping levels, J. Alloys Compd., 505, 362-366.

DOI: 10.1016/j.jallcom.2010.05.183

Google Scholar

[2] R. Kumar, N. Khare. (2008). Temperature dependence of conduction mechanism of ZnO and Co-doped ZnO thin films, Thin Solid Films, 516, 1302–1307.

DOI: 10.1016/j.tsf.2007.06.121

Google Scholar

[3] S. Kumar, R. Kumar, D.P. Singh. (2009). Swift heavy ion induced modifications in cobalt doped ZnO thin films: Structural and optical studies, Appl. Surf. Sci., 255, 8014-8018.

DOI: 10.1016/j.apsusc.2009.05.005

Google Scholar

[4] E.V. Gritskova, D.M. Mukhamedshina, K.A. Mit', N.A. Dolya, K.A. Abdullin. (2009). The structure, photoluminescence, optical and magnetic properties of ZnO films doped with ferromagnetic impurities, Physica B, 404, 4816-4819.

DOI: 10.1016/j.physb.2009.08.307

Google Scholar

[5] W. Zhuliang, L. Xiaoli, J. Fengxian, T. Baoqiang, L. Baohua, X. Xiaohong. (2008). The Effect of Substrate Temperature on the Room Temperature Ferromagnetism of Co-Doped ZnO Thin Films, Rare Met. Mater. Eng., 37.

DOI: 10.1016/s1875-5372(09)60021-7

Google Scholar

[6] S.Y. Seo, C.H. Kwak, S.H. Kim, S.H. Park, I.J. Lee, S.W. Han. (2012). Synthesis and characterization of ferromagnetic Zn1−xCoxO films, J. Cryst. Growth, 346, 56-60.

DOI: 10.1016/j.jcrysgro.2012.02.022

Google Scholar

[7] A. Wang, Z. Zhong, C. Lu, L. Lv, X. Wang, B. Zhang. (2011). Study on field-emission characteristics of electrodeposited Co-doped ZnO thin films, Physica B, 406, 1049-1052.

DOI: 10.1016/j.physb.2010.08.022

Google Scholar

[8] J.J. Hassan, Z. Hassan, H. Abu-Hassan. (2011). High-quality vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO–PVA complex seed layer on Si substrates, J. Alloys Compd., 509, 6711-6719.

DOI: 10.1016/j.jallcom.2011.03.153

Google Scholar

[9] N. Ekem, S. Korkmaz, S. Pat, M.Z. Balbag, E.N. Cetin, M. Ozmumcu. (2009). Some physical properties of ZnO thin films prepared by RF sputtering technique, Int. J. Hydrogen Energy, 34, 5218-5222.

DOI: 10.1016/j.ijhydene.2009.02.001

Google Scholar

[10] A.I. Ievtushenko, V.A. Karpyna, V.I. Lazorenko, G.V. Lashkarev, V.D. Khranovskyy, V.A. Baturin, O.Y. Karpenko, M.M. Lunika, K.A. Avramenko, V.V. Strelchuk, O.M. Kutsay. (2010). High quality ZnO films deposited by radio-frequency magnetron sputtering using layer by layer growth method, Thin Solid Films, 518, 4529-4532.

DOI: 10.1016/j.tsf.2009.12.023

Google Scholar

[11] P. Li, S. Wang, J. Li, Y. Wei. (2012). Structural and optical properties of Co-doped ZnO nanocrystallites prepared by a one-step solution route, J. Lumin., 132, 220-225.

DOI: 10.1016/j.jlumin.2011.08.019

Google Scholar

[12] H. Yang, S. Nie. (2009). Preparation and characterization of Co-doped ZnO nanomaterials, Materials Chemistry and Physics, 114, 279-282.

DOI: 10.1016/j.matchemphys.2008.09.017

Google Scholar

[13] C. Xu, L. Cao, G. Su, W. Liu, X. Qu, Y. Yu. (2010). Preparation, characterization and photocatalytic activity of Co-doped ZnO powders, J. Alloys Compd., 497, 373-376.

DOI: 10.1016/j.jallcom.2010.03.076

Google Scholar

[14] M. Ivill, S.J. Pearton, S. Rawal, L. Leu, P. Sadik, R. Das, A.F. Hebard, M. Chisholm, J.D. Budai, D.P. Norton. (2008). Structure and magnetism of cobalt-doped ZnO thin films, New J. Phys., 10, 065002.

DOI: 10.1088/1367-2630/10/6/065002

Google Scholar

[15] W. Baiqi, S. Xudong, F. Qiang, J. Iqbal, L. Yan, F. Honggang, Y. Dapeng. (2009). Photoluminescence properties of Co-doped ZnO nanorods array fabricated by the solution method, Physica E, 41, 413-417.

DOI: 10.1016/j.physe.2008.09.001

Google Scholar