Characterization of PM Fe-Cr-Y2O3 Composites Prepared by Microwave Sintering Technology

Article Preview

Abstract:

This research is focused on assessing the feasibility of the new and innovative microwave sintering technology for fabricating iron-chromium composites prepared via powder metallurgy route. Accordingly, the microwave sintered iron-chromium compacts was benchmarked against conventional sintered counterparts fabricated in other researches. We also studied the viability of yttria reinforcement to the iron-chromium composites with varying weight fraction from 5 to 20 %. Comparison on the end properties were also being made on the unreinforced iron-chromium matrix (0 wt. % of yttria). The result revealed that the microwave sintered iron-chromium composites possess improved density and micro hardness value. Process evaluation also revealed that microwave assisted sintering can lead to a reduction of 70 % of sintering time when compared to conventional sintering. The micro hardness property of microwave sintered iron-chromium was slightly improved with 5 wt. % addition of yttria, although the density and compressive strength were reduced with increasing content of the ceramic particulates. Most importantly, the study has established the viability of microwave sintering approach used in place of conventional sintering for iron based powder metallurgy composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-50

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Thummler, F. & Oberacker, R. (1993). Introduction to Powder Metallurgy, the Institute of Materials, London

Google Scholar

[2] Shamsuddin, S., Jamaludin, S. B., Hussain, Z. & Ahmad, Z.A. (2008). Journal of Physical Science Vol. 19 (1) pp.89-95.

Google Scholar

[3] Chakthin, S., Morakotjinda, M., Yodkaew, T., Torsangtum, N., Krataithong, R. & Siriphol, P. (2008). Metals, Materials and Minerals 18 (2) pp.67-70.

Google Scholar

[4] Yodkaew, T., Morakotjinda, M., Tosangthum, N. & Coovattanachai, O. (2008). Metals, Materials and Minerals 18 (1) pp.57-61.

Google Scholar

[5] Shankar, J., Upadhyaya, A. & Balasubramaniam, R. (2004). Corros Sci 46 (2) pp.487-498.

Google Scholar

[6] Panda, S. S., Upadhyaya, A. & Agrawal, D. (2006). J Mater Sci 42 (3) pp.966-978

Google Scholar

[7] Hassan, S.F., Tun, K. S. & Gupta, M. (2011). J Alloy Compd 509 p.4341–4347

Google Scholar

[8] Garces, G., Rodriguez, M., Perez, P. & Adeva, P. (2006). Mat Sci Eng A (419) p.357–364.

Google Scholar

[9] Tun, K. S. & Gupta, M. (2007). Compos Sci Technol (67) p.2657–2664.

Google Scholar

[10] Shamsuddin, S. (2010). Study on the Effects of Al2O3 Reinforcement on Fe-Cr Matrix Composite (Ph. D.. Thesis, Universiti Sains Malaysia, Malaysia) pp.145-169.

Google Scholar

[11] Wong, W.L. (2010). JMPEE 44 (1) pp.14-27.

Google Scholar

[12] German, R. M. (1997). Metall Mater Trans A (28A) pp.153-167

Google Scholar

[13] Roy, R., Cheng, D., Gedevanishvili, S. (2005). Powder Metall (48) p.39.

Google Scholar

[14] Roy, R., Agrawal, D., Cheng, J. & Gedevanishivili, S. (1999). Nature (399) p.668.

Google Scholar

[15] Wong, W. L. E.; Karthik, S.& Gupta, M. (2005). J Mater Sci 40 pp.3395-3402

Google Scholar

[16] Wong, W. L. E., Tun, K. S. & Gupta, M (2011). Kovove Mater 49, p.219–231

Google Scholar

[17] Rahman, W., Shamsul, J. B. & Mazlee, M.N. (2012) Proceedings of Advanced Material Conference, pp.169-174

Google Scholar

[18] Hampshire, S. & jack, K. S. (1981) Proc. Brit. Ceram. Soc. (31) pp.37-49

Google Scholar

[19] Ahmad, K. R., Jamaludin, S. B., Hussain, L. B. & Ahmad, Z. A. (2005).Journal of Technology 42(A) pp.49-57

Google Scholar