The Influence of Donor-Doped Concentration on the PTCR Characteristics of the Ban-xSmxTiO3 Based Ceramics Sintered in Reducing Atmosphere

Article Preview

Abstract:

Positive temperature coefficient of resistivity (PTCR) effect and electrical properties of (Ban-xSmx)TiO3 (BSMT ) samples with different Ba-site/Ti-site ratio (n) and various concentration of the donor-doped Sm3+ (x) sintered in a reducing atmosphere and reoxidized in air are investigated. The results show that the room temperature resistivity (ρRT) of the semiconducting BSMT ceramics first decreases and then increases with increasing of concentration of the donor-doped Sm3+, especially when x is 0.005 mol, the ρRT of the BSMT ceramics is the lowest. Moreover, the ρRT of the Ba-excess BSMT (n = 1.01) specimens reoxidized at 800 oC for 1 h after sintering at 1270 °C for 30 min in a reducing atmosphere is lower than the Ti-excess ones (n = 0.99), in addition, the ρRT of the BSMT specimens increases with an increase of both sintering temperature and reoxidized time.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

1031-1034

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.K. Chung and S.C. Choi: J. Korean Chem. Soc. Vol. 46, No. 3 (2009), pp.330-335.

Google Scholar

[2] Z.C. Li, H. Zhang, X.D. Zou and B. Bergman: Mater. Sci. Eng. , B Vol. 116 (2005), pp.34-39.

Google Scholar

[3] M.W. Mancini and P.I. Paulin Filho: J. Appl. Phys. Vol. 100 (2006), p.104501.

Google Scholar

[4] J. Illingsworth, H.M. AI-Allak, A.W. Brinkman and J. Woods: J. Appl. Phys. Vol. 67, No. 4 (1990), p. (2088).

Google Scholar

[5] W. Heywang: J. Am. Ceram. Soc. Vol. 47, No. 10 (1964), p.484.

Google Scholar

[6] W. Heywang: Solid-State Electron. Vol. 3 (1961), p.51.

Google Scholar

[7] G.H. Jonker: Solid-State Electron. Vol. 7 (1964), pp.895-903.

Google Scholar

[8] P.H. Xiang, H. Harinaka, H. Takeda, T. Nishida, K. Uchiyama and T. Shiosaki: J. Appl. Phys. Vol. 104, (2008), p.094108.

Google Scholar

[9] H. Niimi, K. Mihara, Y. Sakabe and M. Kuwabara: Jpn. J. Appl. Phys. Vol. 46, No. 10A (2007), pp.6715-6718.

DOI: 10.1143/jjap.46.6715

Google Scholar

[10] X.X. Cheng, D.X. Zhou, Q.Y. Fu, S.P. Gong, D.C. Zhao: J. Mater. Sci.: Mater. Electron. Vol. 23, No. 12 (2012), pp.2202-2209.

Google Scholar

[11] X.X. Cheng, D.X. Zhou, Q.Y. Fu, S.P. Gong, Y.X. Qin: J. Phys. D: Appl. Phys. Vol. 45, No. 38 (2012), p.385306 (7pp).

Google Scholar

[12] H. Niimi, K. Mihara and Y. Sakabe: J. Am. Ceram. Soc. Vol. 90 No. 6 (2007) pp.1817-1821.

Google Scholar

[13] H. Niimi, T. Ishikawa, K. Mihara, Y. Sakabe and M. Kuwabara: Jpn. J. Appl. Phys. Vol. 46, No. 2 (2007), pp.675-680.

Google Scholar

[14] J.K. Lee and K.S. Hong: J. Am. Ceram. Soc. Vol. 84 (2001), p.2001-(2006).

Google Scholar

[15] X.X. Cheng, D.X. Zhou, Q.Y. Fu: Trans. Ind. Ceram. Soc. Vol. 71, No. 4 (2012), pp.189-194.

Google Scholar