Adsorption of Cd(II) from Aqueous Solution by Magnetic Graphene

Article Preview

Abstract:

In the present study, Fe3O4/graphene nanoparticles (Fe3O4/GN NPs) were obtained and modified with silane coupling agent. The effects of Cd (II) adsorption experimental parameters such as contact time and initial Cd (II) ion concentration, were investigated. The adsorption dynamics follow the laws of pseudo-second-order kinetics and the rate was controlled by chemical adsorption. The Langmuir isotherm model provided the better correlation between adsorbing capacity and equilibrium concentration.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

1011-1014

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Tan, D. Xiao, Journal of hazardous materials, 164 (2009) 1359-1363.

Google Scholar

[2] J.O. Esalah, M.E. Weber, J.H. Vera, The Canadian Journal of Chemical Engineering, 78 (2000) 948-954.

Google Scholar

[3] M. Irani, A.R. Keshtkar, M.A. Moosavian, Chemical Engineering Journal, 200-202 (2012) 192-201.

Google Scholar

[4] S. Mustafa, M. Waseem, A. Naeem, K.H. Shah, T. Ahmad, S.Y. Hussain, Chemical Engineering Journal, 157 (2010) 18-24.

Google Scholar

[5] S. Bai, X. Shen, RSC Advances, 2 (2012) 64-98.

Google Scholar

[6] G. Zhao, L. Jiang, Y. He, J. Li, H. Dong, X. Wang, W. Hu, Advanced materials, 23 (2011) 3959-3963.

Google Scholar

[7] X. Deng, L. Lü, H. Li, F. Luo, Journal of hazardous materials, 183 (2010) 923-930.

Google Scholar

[8] X. Mi, G. Huang, W. Xie, W. Wang, Y. Liu, J. Gao, Carbon, 50 (2012) 4856-4864.

Google Scholar

[9] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature, 442 (2006) 282-286.

DOI: 10.1038/nature04969

Google Scholar

[10] Y. Zhang, B. Chen, L. Zhang, J. Huang, F. Chen, Z. Yang, J. Yao, Z. Zhang, Nanoscale, 3 (2011) 1446-1450.

Google Scholar

[11] Y. -P. Chang, C. -L. Ren, J. -C. Qu, X. -G. Chen, Applied Surface Science, 261 (2012) 504-509.

Google Scholar

[12] J. -H. Deng, X. -R. Zhang, G. -M. Zeng, J. -L. Gong, Q. -Y. Niu, J. Liang, Chemical Engineering Journal, 226 (2013) 189-200.

Google Scholar

[13] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Acs Nano, 4 (2010) 4806-4814.

DOI: 10.1021/nn1006368

Google Scholar

[14] M. Arvand, M.A. Pakseresht, Journal of Chemical Technology & Biotechnology, 88 (2013) 572-578.

Google Scholar

[15] I. Langmuir, Journal of the American Chemical society, 40 (1918) 1361-1403.

Google Scholar

[16] H. Freundlich, Z. Phys. Chem, 57 (1906) 385-470.

Google Scholar

[17] V. Chandra, J. Park, Y. Chun, J.W. Lee, I. -C. Hwang, K.S. Kim, ACS nano, 4 (2010) 3979-3986.

Google Scholar

[18] X. Wang, W. Xing, L. Song, B. Yu, Y. Hu, G.H. Yeoh, Reactive and Functional Polymers, (2013).

Google Scholar