Preparation of HgS Nanoparticles with Adjustable Dispersibility at Water/n-butyl Alcohol Interface

Article Preview

Abstract:

HgS nanoparticles with adjustable dispersibility have been synthesized at the water/n-butyl alcohol interface and characterized with Xray diffraction, transmission electron microscopy. Meanwhile, the dispersibility of the asprepared HgS nanoparticles in water and nbutyl alcohol were measured, respectively. The results indicate that the cubic HgS nanoparticles could be obtained; and the dispersibility of the HgS nanoparticles can be simply tuned. When Hg (CH3COO)2 aqueous solution and nbutyl alcohol solution of thioacetamide are used, the asprepared HgS nanoparticles can be dispersed in water to form a solutionlike suspension. In contrast, when thioacetamide aqueous solution and nbutyl alcohol solution of Hg (CH3COO)2 are used, the oil dispersible HgS nanoparticles are obtained. Moreover, the mechanism about the adjustable dispersibility of HgS nanoparticles is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

994-997

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.R. Hou, L. Chen and S. Chen: Langmuir 25 (2009), p.2869.

Google Scholar

[2] D.C. Pan, Q. Wang, S.C. Jiang, X.L. Ji and L.J. An: Adv. Mater. 17 (2005), p.176.

Google Scholar

[3] Y.T. Didenko and K.S. Suslick: J. Am. Chem. Soc. 127 (2005), p.12196.

Google Scholar

[4] N.N. Zhao, D.C. Pan, W. Nie and X.L. Ji: J. Am. Chem. Soc. 128 (2006), p.10118.

Google Scholar

[5] Y. Kanemitsu, M. Ando, K. Matsuda, T. Saiki and C.W. White: phys. stat. sol. (a) 190 (2002), p.537.

Google Scholar

[6] R. Thiruvengadathan and O. Regev: Chem. Mater. 17 (2005), p.3281.

Google Scholar

[7] M.F. Zhang, M. Drechsler and A.H. E. Müller: Chem. Mater. 16 (2004), p.537.

Google Scholar

[8] J.S. Jang, U.A. Joshi and J.S. Lee: J. Phys. Chem. C 111 (2007), p.13280.

Google Scholar

[9] G.Z. Shen, J.H. Cho, J.K. Yoo, G.C. Yi and C.J. Lee: J. Phys. Chem. B 109 (2005), p.9294.

Google Scholar

[10] D. Xu, Z.P. Liu, J.B. Liang and Y.T. Qian: J. Phys. Chem. B 109 (2005), p.14344.

Google Scholar

[11] B. Sadtler, D.O. Demchenko, H.M. Zheng, S.M. Hughes, M.G. Merkle, U. Dahmen, L.W. Wang and A.P. Alivisatos: J. Am. Chem. Soc. 131 (2009), p.5285.

DOI: 10.1021/ja809854q

Google Scholar

[12] Y.C. Cao and J.H. Wang: J. Am. Chem. Soc. 126 (2004), p.14336.

Google Scholar

[13] M.W. Shao, L.F. Kong, Q. Li, W.C. Yu and Y.T. Qian: Inorg. Chem. Commun. 6 (2003), p.737.

Google Scholar

[14] D.J. Elliot, D.N. Furlon and F. Grieser: Colloids Surf. A Physicochem. Eng. Asp. 155 (1999). p.101.

Google Scholar

[15] W.W. Xu, S.Y. Lou, S. Li, H Z. Wang, H.B. Shen, J.Z. Niu, Z.L. Du and L.S. Li: Colloids Surf. A Physicochem. Eng. Asp. 341 (2009), p.68.

Google Scholar

[16] L. Zhang, G.R. Yang, G.X. Hea, L. Wang, Q.R. Liu, Q.X. Zhang and D.Z. Qin: Appl. Surf. Sci. 258 (2012), p.8185.

Google Scholar

[17] Y.G. Yang, H.G. Liu, L.J. Chen, K.C. Chen, H.P. Ding and J.C. Hao: Langmuir 26 (2010), p.14879.

Google Scholar