Effects of Bias on Optical and Chemical Bonding Properties of Germanium Carbon Films

Article Preview

Abstract:

Amorphous hydrogenated Ge1-xCx films are prepared by radio frequency (RF) magnetron cosputtering using Ge/graphite composite target and their composition, optical and chemical bonding properties as a function of bias have been investigated. The results show a decrease in the deposition rate with increasing bias, and the optical gap nearly keep constant due to effects of both composition and chemical bonding. Through the analysis of X-ray photoelectron spectroscopy, we find that the content of Ge-C bonds first increases and then decreases as increasing bias while the Ge-O bond decreases monotonically.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

1074-1078

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Serenyi, et al., Physica Status Solidi C 0/3 (2003) 857-861.

Google Scholar

[2] I.A. Yunaz, et al., Solar Energy Materials and Solar Cells 93/6-7 (2009) 1056-1061.

Google Scholar

[3] M. Kumru, Thin Solid Films 198/1-2 (1991) 75-84.

Google Scholar

[4] J. Shinar, et al., J. Appl. Phys. 62/3 (1987) 808-812.

Google Scholar

[5] N. Saito, T. Yamaguchi, I. Nakaaki, J. Appl. Phys. 78/6 (1995) 3949-3954.

Google Scholar

[6] N. Xuejun, PhD PhD thesis, Iowa State University, (2004).

Google Scholar

[7] J. Szmidt, et al., Thin Solid Films 441 (2003) 192-199.

Google Scholar

[8] P. Kazimierski, J. Non-Cryst. Solids 325 (2003) 206-212.

Google Scholar

[9] A. Grill, et al., J. Mater. Res. 17/2 (2002) 367-375.

Google Scholar

[10] J.T. Herrold, V.L. Dalal, J. Non-Cryst. Solids 270 (2000) 255-259.

Google Scholar

[11] J. Tyczkowski, P. Kazimierski, J. Grabkowski, Surf. Coat. Tech. 142-144 (2001) 792-796.

Google Scholar

[12] N. Saito, et al., Thin Solid Films 269 (1995) 69-74.

Google Scholar

[13] C.N. Zoita, et al., Thin Solid Films 519/12 (2011) 4101-4105.

Google Scholar

[14] C.Q. Hu, et al., J. Phys. D: Appl. Phys. 39 (2006) 5074-5079.

Google Scholar

[15] J. Vilcarromero, C. Marques, F.L. Freire Jr., J. Appl. Phys. 84/1 (1998) 174-180.

Google Scholar

[16] C.Z. Jiang, et al., J. Non-Cryst. Solids 357/24 (2011) 3952-3956.

Google Scholar

[17] X.S. Che, et al., Applied Surface Science 258/17 (2012) 6212-6216.

Google Scholar

[18] N. Laegreid, G. Wehner, B. Meckel, J. Appl. Phys. 30/3 (1959) 374-377.

Google Scholar

[19] J.N. Smith Jr., C.H. Meyer Jr., J.K. Layton, Nucl. Technol. 29/3 (1976) 318-321.

Google Scholar

[20] S. Kumar, S.C. Kashyap, K.L. Chopra, J. Non-Cryst. Solids 101/2-3 (1988) 287-290.

Google Scholar

[21] S. Kumar, H.J. Trodahl, Thin Solid Films 193-194/Part 1 (1990) 72-76.

Google Scholar

[22] Motoki Okinaka, et al., J. Cryst. Growth 249 (2003) 78-86.

Google Scholar