[1]
D.J. Niu, H. Huang, X.H. Dai, Y.C. Zhao, Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China. Waste Manage. 33(2013), 23-28.
DOI: 10.1016/j.wasman.2012.06.024
Google Scholar
[2]
S.I. Mussatto, G. Dragone, I.C. Roberto, Brewers' spent grain: generation, characteristics and potential applications. J. Cereal. Sci. 43 (2006), 1-14.
DOI: 10.1016/j.jcs.2005.06.001
Google Scholar
[3]
Information on http: /data. chyxx. com/201301/193365. html.
Google Scholar
[4]
K.S. Low, C.K. Lee, S.C. Liew, Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem. 36 (2000), 59-64.
DOI: 10.1016/s0032-9592(00)00177-1
Google Scholar
[5]
K.S. Low, C.K. Lee, C.H. Low, Sorption of chromium (VI) by spent grain under batch conditions. J. APPL. Polym. Sci. 82 (2001), 2128-2134.
DOI: 10.1002/app.2058
Google Scholar
[6]
A. Méndez, A. Gómez, J. Paz-Ferreiro, G. Gascó, Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89(2012), 1354-1359.
DOI: 10.1016/j.chemosphere.2012.05.092
Google Scholar
[7]
S. Yaman, Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manage. 45(2004), 651–671.
DOI: 10.1016/s0196-8904(03)00177-8
Google Scholar
[8]
G. Maschio, C. Koufopanos, A. Lucchesi, Pyrolysis, a promising route for biomass utilization. Bioresour. Technol. 42 (1992), 219-231.
DOI: 10.1016/0960-8524(92)90025-s
Google Scholar
[9]
H. Haykiri-Acma, S. Yaman, S. Kucukbayrak, Effect of heating rate on the pyrolysis yields of rapeseed. Renew. Energ. 31(2006), 803-810.
DOI: 10.1016/j.renene.2005.03.013
Google Scholar
[10]
B.P. Singh, B.J. Hatton, B. Singh, A.L. Cowie, Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils, J. Environ. Qua. 39(2010), 1224-1235.
DOI: 10.2134/jeq2009.0138
Google Scholar
[11]
X. Cao, W. Harris, Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource technol. 101 (2010), 5222-5228.
DOI: 10.1016/j.biortech.2010.02.052
Google Scholar
[12]
S. Sensöz, S. Yorgun, D. Angin, E. Çulcuoğlu, D. ÖzÇimen, F. Karaosmanoğlu, Fixed bed pyrolysis of the rapeseed cake. Energy Sources 23 (2001), 873-876.
DOI: 10.1080/009083101317071315
Google Scholar
[13]
T.J. Kinney, C.A. Masiello, B. Dugan, W.C. Hockaday, Dean, M.R., Zygourakis, K., Barnes, R.T.: Hydrologic properties of biochars produced at different temperatures, Biomass Bioenerg. 41(2012), 34-43.
DOI: 10.1016/j.biombioe.2012.01.033
Google Scholar
[14]
L. Van Zwieten, S. Kimber, S. Morris, K.Y. Chan, A. Downie, Downie, J. Downie, S. Joseph, A. Cowie, Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant Soil 327(2010), 235-246.
DOI: 10.1007/s11104-009-0050-x
Google Scholar
[15]
J. Lehmann, J. Gaunt, M. Rondon, Bio-char sequestration in terrestrial Ecosystems-a review. Mitig. Adapt. Strat. Glob. Change 11 (2006), 403-427.
DOI: 10.1007/s11027-005-9006-5
Google Scholar
[16]
A. Demirbas, Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 72(2004), 243–248.
DOI: 10.1016/j.jaap.2004.07.003
Google Scholar
[17]
B. Purevsuren, B. Avid, B. Tesche, YA. Davaajav, A biochar from casein and its properties. J. MATER. SCI. 38 (2003), 2347-351.
Google Scholar
[18]
P. Liu, W.J. Liu, H. Jiang, J.J. Chen, W.W. Li, H.Q. Yu, Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technol. 121(2012), 235-240.
DOI: 10.1016/j.biortech.2012.06.085
Google Scholar
[19]
W. Ding, X.L. Zeng, Y.F. Wang, Y. Du, Q.X. Zhu, Characteristics and performances of biofilm carrier prepared from agro-based biochar. China Environmental Science 31(2011), 1451-1455.
Google Scholar