Preparation and Property of a Bio-Char from De-Watered Sludge and Beer Lees

Article Preview

Abstract:

De-watered sludge (DS) and beer lees (BL) are mixed to be co-pyrolyzed into bio-char in this work. Bio-char was produced by heating at carbonization temperatures (550°C) with the ratio of DS to BL (1:1, 1.5:1, 2:1 and 4:1). Yield, ash content, FTIR, zeta potential and SEM of the bio-char were investigated. With temperature increasing, yield (39.4-57.3%, wt.%) decreased, while ash content (33.9-56.4%) increased in a high DS ratio, changing of the functional groups on bio-char (e.g., C=C, aromatic ring) in the co-pyrolysis process improve adsorption capacity for pollutant. Moreover, negative potentials (-10.583~-35.563 mV) of bio-char can provide breeding sites for microorganism and electrostatic attraction for heavy metal ions. The result showed this conversion could become a promising approach to dispose pollution problems, simultaneously, for the environmental remediation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

125-130

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.J. Niu, H. Huang, X.H. Dai, Y.C. Zhao, Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China. Waste Manage. 33(2013), 23-28.

DOI: 10.1016/j.wasman.2012.06.024

Google Scholar

[2] S.I. Mussatto, G. Dragone, I.C. Roberto, Brewers' spent grain: generation, characteristics and potential applications. J. Cereal. Sci. 43 (2006), 1-14.

DOI: 10.1016/j.jcs.2005.06.001

Google Scholar

[3] Information on http: /data. chyxx. com/201301/193365. html.

Google Scholar

[4] K.S. Low, C.K. Lee, S.C. Liew, Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem. 36 (2000), 59-64.

DOI: 10.1016/s0032-9592(00)00177-1

Google Scholar

[5] K.S. Low, C.K. Lee, C.H. Low, Sorption of chromium (VI) by spent grain under batch conditions. J. APPL. Polym. Sci. 82 (2001), 2128-2134.

DOI: 10.1002/app.2058

Google Scholar

[6] A. Méndez, A. Gómez, J. Paz-Ferreiro, G. Gascó, Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89(2012), 1354-1359.

DOI: 10.1016/j.chemosphere.2012.05.092

Google Scholar

[7] S. Yaman, Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manage. 45(2004), 651–671.

DOI: 10.1016/s0196-8904(03)00177-8

Google Scholar

[8] G. Maschio, C. Koufopanos, A. Lucchesi, Pyrolysis, a promising route for biomass utilization. Bioresour. Technol. 42 (1992), 219-231.

DOI: 10.1016/0960-8524(92)90025-s

Google Scholar

[9] H. Haykiri-Acma, S. Yaman, S. Kucukbayrak, Effect of heating rate on the pyrolysis yields of rapeseed. Renew. Energ. 31(2006), 803-810.

DOI: 10.1016/j.renene.2005.03.013

Google Scholar

[10] B.P. Singh, B.J. Hatton, B. Singh, A.L. Cowie, Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils, J. Environ. Qua. 39(2010), 1224-1235.

DOI: 10.2134/jeq2009.0138

Google Scholar

[11] X. Cao, W. Harris, Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource technol. 101 (2010), 5222-5228.

DOI: 10.1016/j.biortech.2010.02.052

Google Scholar

[12] S. Sensöz, S. Yorgun, D. Angin, E. Çulcuoğlu, D. ÖzÇimen, F. Karaosmanoğlu, Fixed bed pyrolysis of the rapeseed cake. Energy Sources 23 (2001), 873-876.

DOI: 10.1080/009083101317071315

Google Scholar

[13] T.J. Kinney, C.A. Masiello, B. Dugan, W.C. Hockaday, Dean, M.R., Zygourakis, K., Barnes, R.T.: Hydrologic properties of biochars produced at different temperatures, Biomass Bioenerg. 41(2012), 34-43.

DOI: 10.1016/j.biombioe.2012.01.033

Google Scholar

[14] L. Van Zwieten, S. Kimber, S. Morris, K.Y. Chan, A. Downie, Downie, J. Downie, S. Joseph, A. Cowie, Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant Soil 327(2010), 235-246.

DOI: 10.1007/s11104-009-0050-x

Google Scholar

[15] J. Lehmann, J. Gaunt, M. Rondon, Bio-char sequestration in terrestrial Ecosystems-a review. Mitig. Adapt. Strat. Glob. Change 11 (2006), 403-427.

DOI: 10.1007/s11027-005-9006-5

Google Scholar

[16] A. Demirbas, Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 72(2004), 243–248.

DOI: 10.1016/j.jaap.2004.07.003

Google Scholar

[17] B. Purevsuren, B. Avid, B. Tesche, YA. Davaajav, A biochar from casein and its properties. J. MATER. SCI. 38 (2003), 2347-351.

Google Scholar

[18] P. Liu, W.J. Liu, H. Jiang, J.J. Chen, W.W. Li, H.Q. Yu, Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technol. 121(2012), 235-240.

DOI: 10.1016/j.biortech.2012.06.085

Google Scholar

[19] W. Ding, X.L. Zeng, Y.F. Wang, Y. Du, Q.X. Zhu, Characteristics and performances of biofilm carrier prepared from agro-based biochar. China Environmental Science 31(2011), 1451-1455.

Google Scholar