The Electrochemistry Behaviour of Carbon Steel in 55% LiBr Solution with A-Mo Inhibitor

Article Preview

Abstract:

The inhibition effects of A-Mo inhibitor on corrosion of carbon steel in 55% LiBr solution were investigated using cyclic potentiodynamic polarization curves EIS experiments, Mott-Schottky analysis, SEM, EDAX and XRD methods. The results revealed that A-Mo inhibitor was capable of inhibiting the corrosion of carbon steel in 55%LiBr solution, exhibiting high inhibition efficiencies around 99.7%. A-Mo inhibitor promoted the formation of a protective passive film composed of Fe, Mo and O elements. The passive film improved the electrochemistry performance and enhanced corrosion resistance of carbon steel.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

1280-1287

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.C. Kaushik and A. Arora, Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems, Int. J. Refrig. 32 (2009) 1247–1258.

DOI: 10.1016/j.ijrefrig.2009.01.017

Google Scholar

[2] O. Kaynakli and M. Kilic: Energ, Theoretical study on the effect of operating conditions on performance of absorption refrigeration system, Convers. Manage. 48 (2007) 599–607.

DOI: 10.1016/j.enconman.2006.06.005

Google Scholar

[3] R.D. Misra, P.K. Sahoo and A. Gupta, Thermoeconomic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system, Int. J. Refrig. 28 (2005) 331–343.

DOI: 10.1016/j.ijrefrig.2004.09.006

Google Scholar

[4] P. Srikhirin, S. Aphornratana and S. Chungpaibulpatana, A review of absorption refrigeration technologies, Renew. Sust. Energ. Rev. 5 (2001) 343–372.

DOI: 10.1016/s1364-0321(01)00003-x

Google Scholar

[5] G.A. Florides, S.A. Kalogirou, S.A. Tassou and L. C, Design and construction of a LiBr–water absorption machine, Wrobel: Energ. Convers. Manage. 44 (2003) 2483–2508.

DOI: 10.1016/s0196-8904(03)00006-2

Google Scholar

[6] H. Cheng, Cu(II) Removal from lithium bromide refrigerant by chemical precipitation and electrocoagulation, Sep. Purif. Technol. 52 (2006) 191-195.

DOI: 10.1016/j.seppur.2006.03.021

Google Scholar

[7] A. Igual-Muñoz, J. García-Antón, J.L. Guiñón and V. Pérez-Herranz, Corrosion Behavior and Galvanic Coupling of Stainless Steels, Titanium, and Alloy 33 in Lithium Bromide Solutions, Corrosion 59 (7) (2003) 606-615.

DOI: 10.5006/1.3277591

Google Scholar

[8] D. Itzhak and T. Greenberg, Galvanic Corrosion of a Copper Alloy in Lithium Bromide Heavy Brine Environments, Corrosion 55 (8) (1999) 795-799.

DOI: 10.5006/1.3284035

Google Scholar

[9] A. Igual-Muñoz, J. García-Antón, J.L. Guiñón and V. Pérez-Herranz, Galvanic Studies of Copper Coupled to Alloy 33 and Titanium in Lithium Bromide Solutions, Corrosion 58 (12) (2002) 995-1003.

DOI: 10.5006/1.3280797

Google Scholar

[10] A. Igual-Muñoz, J.L. Guiñón and V. Pérez-Herranz, Online Visualization of Corrosion Processes of Zinc and a Cu/Zn Galvanic Pair in Lithium Bromide Solutions, Corrosion 59 (2) (2003) 172-180.

DOI: 10.5006/1.3277547

Google Scholar

[11] J.L. Guiñón, J. García-Antón, V. Pérez-Herranz and G. Lacoste, Corrosion of Carbon Steels, Stainless Steels, and Titanium in Aqueous Lithium Bromide Solution, Corrosion 50 (3) (1994) 240-246.

DOI: 10.5006/1.3293516

Google Scholar

[12] J. García-Antón, V. Pérez-Herranz, J.L. Guiñón and G. Lacoste, Use of Differential Pulse Polarography to Study Corrosion of Galvanized Steel in Aqueous Lithium Bromide Solution, Corrosion 50 (2) (1994) 91-97.

DOI: 10.5006/1.3293506

Google Scholar

[13] E. Blasco-Tamarit, A. Igual-Muñoz, J. García Antón and D. García-García, Effect of aqueous LiBr solutions on the corrosion resistance and galvanic corrosion of an austenitic stainless steel in its welded and non-welded condition, Corros. Sci. 48 (2006).

DOI: 10.1016/j.corsci.2005.02.028

Google Scholar

[14] D.M. García-García, J. García-Antón, A. Igual-Muñoz, and E. Blasco-Tamarit, Cavitation-Corrosion Studies on Welded and Nonwelded Duplex Stainless Steel in Aqueous Lithium Bromide Solutions, Corrosion 63(5) (2007) 462-479.

DOI: 10.5006/1.3278399

Google Scholar

[15] I. Nicic and D.D. Macdonald The passivity of Type 316L stainless steel in borate buffer solution, J. Nucl. Mater. 379 (2008) 54-58.

DOI: 10.1016/j.jnucmat.2008.06.014

Google Scholar

[16] G.A. Zhang and Y.F. Cheng, Micro-electrochemical characterization and Mott–Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution, Electrochim. Acta 55 (2009) 316-324.

DOI: 10.1016/j.electacta.2009.09.001

Google Scholar

[17] Y.M. Zeng and J.L. Luo, Electronic band structure of passive film on X70 pipeline steel, Electrochim. Acta 48 (2003) 3551-3562.

DOI: 10.1016/s0013-4686(03)00477-8

Google Scholar

[18] S. Fujimoto and H. Tsuchiya, Semiconductor properties and protective role of passive films of iron base alloys, Corros. Sci. 49 (2007) 195-202.

DOI: 10.1016/j.corsci.2006.05.020

Google Scholar

[19] M.C.K. Sellers and E.G. Seebauer, Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach, Thin Solid Films, 519(2011) 2103-2110.

DOI: 10.1016/j.tsf.2010.10.071

Google Scholar

[20] A.M. Schmidt, D.S. Azambuja and E.M.A. Martini, Semiconductive properties of titanium anodic oxide films in McIlvaine buffer solution, Corros. Sci. 48 (2006) 2901-2912.

DOI: 10.1016/j.corsci.2005.10.013

Google Scholar

[21] E. Sikora and D.D. Macdonald, Nature of the passive film on nickel, Electrochim. Acta 48 (2002) 69-77.

Google Scholar

[22] K.J. Park, S.J. Ahn and H.S. Kwon, Effects of solution temperature on the kinetic nature of passive film on Ni, Electrochim. Acta 56 (2011) 1662-1669.

DOI: 10.1016/j.electacta.2010.09.077

Google Scholar

[23] D.S. Kong, S.H. Chen, C. Wang and W. Yang, A study of the passive films on chromium by capacitance measurement, Corros. Sci. 45 (2003) 747-758.

DOI: 10.1016/s0010-938x(02)00148-8

Google Scholar

[24] J. Kang, Y. Yang, X. Jiang and H. Shao, Semiconducting properties of passive films formed on electroplated Ni and Ni–Co alloys, Corros. Sci. 50 (2008) 3576-3580.

DOI: 10.1016/j.corsci.2008.09.005

Google Scholar

[25] L.A.S. Ries, M. Da Cunha Belo, M.G.S. Ferreira and I.L. Muller, Chemical composition and electronic structure of passive films formed on Alloy 600 in acidic solution, Corros. Sci. 50 (2008) 676-686.

DOI: 10.1016/j.corsci.2007.11.006

Google Scholar

[26] S. Giddey, B. Cherry and F. Lawson, Stability of oxide films formed on mild steel in turbulent flow conditions of alkaline solutions at elevated temperatures, Corros. Sci. 43 (2001) 1497-1517.

DOI: 10.1016/s0010-938x(00)00150-5

Google Scholar

[27] Y.F. Cheng and J.L. Luo, Passivity and pitting of carbon steel in chromate solutions, Electrochim. Acta 44 (1999) 4795-4804.

DOI: 10.1016/s0013-4686(99)00264-9

Google Scholar

[28] J.W. Guo and C.H. Liang, Mechanism of the formation of passive state films on carbon steel in a high temperature and high concentration lithium bromide solution, Mater. Sci. Technol. 9 (2001) 413-416.

Google Scholar