Fabrication of Paper-Based Microfluidics by Single-Step Wax Printing for Portable Multianalyte Bioassays

Article Preview

Abstract:

In this paper, we initially report a new type of wax printing method for rapid fabrication of microfluidic devices in paper using a commercially available, cheap, minitype (home-use) CO2 laser engraving machine. This method combines the two core operations commonly involved in all previous wax printing methods, namely the printing and heating (melting) of wax patterns into one operation of engraving home-made wax slice (put in contact with the surface of paper) by laser. The heat produced by the laser makes the wax being engraved melt and then spread into paper to form complete hydrophobic barriers which are used to define the hydrophilic flow channels or separate test microzones. Under the optimized experimental conditions, a typical device on a 3 cm × 3 cm piece of paper could be fabricated separately within ~320 sec and is ready for use once the engraving process is completed. The fabrication resolution and multiplexed analytical capability of the wax-patterned paper were additionally characterized.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

503-508

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Li, D.R. Ballerini and W. Shen: Biomicrofluidics Vol. 6 (2012), pp.011301-1.

Google Scholar

[2] A.W. Martinez, S.T. Phillips, G.M. Whitesides and E. Carrilho: Anal. Chem. Vol. 82 (2010), p.3.

Google Scholar

[3] A.W. Martinez, S.T. Phillips, M.J. Butte and G.M. Whitesides: Angew. Chem. Int. Ed. Vol. 46 (2007), p.1318.

Google Scholar

[4] A.W. Martinez, S.T. Phillips, B.J. Wiley, M. Gupta and G.M. Whitesides: Lab Chip Vol. 8 (2008), p.2146.

Google Scholar

[5] E. Carrilho, A.W. Martinez and G.M. Whitesides: Anal. Chem. Vol. 81 (2009), p.7091.

Google Scholar

[6] G.G. Lewis, M.J. DiTucci, M.S. Baker and S.T. Phillips: Lab Chip Vol. 12 (2012), p.2630.

Google Scholar

[7] Y. Lu, W.W. Shi, L. Jiang, J.H. Qin and B.C. Lin: Electrophoresis Vol. 30 (2009), p.1497.

Google Scholar

[8] Y. Lu, W.W. Shi, J.H. Qin and B.C. Lin: Anal. Chem. Vol. 82 (2010), p.329.

Google Scholar

[9] J.L. Delaney, C.F. Hogan, J.F. Tian and W. Shen: Anal. Chem. Vol. 83 (2011), p.1300.

Google Scholar

[10] C.G. Shi, X. Shan, Z.Q. Pan, J.J. Xu, C. Lu, N. Bao and H.Y. Gu: Anal. Chem. Vol. 84 (2012), p.3033.

Google Scholar

[11] A. Määttänen, D. Forsa, S.X. Wang, D. Valtakaria and P. Ihalainena: Sens. Actuators B: Chem. Vol. 160 (2011), p.1404.

Google Scholar

[12] J. Olkkonen, K. Lehtinen and T. Erho: Anal. Chem. Vol. 82 (2010), p.10246.

Google Scholar

[13] C.M. Cheng, A.D. Mazzeo, J.L. Gong, A.W. Martinez, S.T. Phillips, N. Jain and G.M. Whitesides: Lab Chip Vol. 10 (2010), p.3201.

Google Scholar

[14] X. Li, J. Tian, T. Nguyen and W. Shen: Anal. Chem. Vol. 80 (2008), p.9131.

Google Scholar

[15] G. Chitnis, Z.W. Ding, C.L. Chang, C.A. Savranacde and B. Ziaie: Lab Chip Vol. 11 (2011), p.1161.

Google Scholar

[16] E.M. Fenton, M.R. Mascareñas, G.P. Lopez and S.S. Sibbett: ACS Appl. Mater. Interfaces Vol. 1 (2009), p.124.

Google Scholar

[17] J.F. Nie, Y.Z. Liang, Y. Zhang, S.W. Le, D.N. Li and S.B. Zhang: Analyst Vol. 138 (2012), p.671.

Google Scholar

[18] D.A. Bruzewicz, M. Reches and G.M. Whitesides: Anal. Chem. Vol. 80 (2008), p.3387.

Google Scholar

[19] J.F. Nie, Y. Zhang, L.W. Lin, C.B. Zhou, S.H. Li, L.M. Zhang and J.P. Li: Anal. Chem. Vol. 84 (2012), p.6331.

Google Scholar

[20] W. Dungchai, O. Chailapakul and C.S. Henry: Analyst Vol. 136 (2011), p.77.

Google Scholar

[21] K.M. Schilling, A.L. Lepore, J.A. Kurian and A.W. Martinez: Anal. Chem. Vol. 84 (2012), p.1579.

Google Scholar

[22] S.M.Z. Hossain and J.D. Brennan: Anal. Chem. Vol. 83 (2011), p.8772.

Google Scholar

[23] M.M. Mentele, J. Cunningham, K. Koehler, J. Volckens and C.S. Henry: Anal. Chem. Vol. 84 (2012), p.4474.

Google Scholar

[24] S.J. Vella, P. Beattie, R. Cademartiri, A. Laromaine, A.W. Martinez, S.T. Phillips, K.A. Mirica and G.M. Whitesides: Anal. Chem. Vol. 84 (2012), p.2883.

DOI: 10.1021/ac203434x

Google Scholar

[25] J.C. Jokerst, J.A. Adkins, B. Bisha, M.M. Mentele, L.D. Goodridge and C.S. Henry: Anal. Chem. Vol. 84 (2012), p.2900.

DOI: 10.1021/ac203466y

Google Scholar

[26] Jr.J.D. Peele, R.H. Gadsden and R. Crews: Clin. Chem. Vol. 23 (1977), p.2242.

Google Scholar

[27] M.J. Pugia, J.A. Lott, J.A. Profitt and T.K. Cast: J. Clin. Lab. Anal. Vol. 13 (1999), p.180.

Google Scholar