Thermal Debromination of Waste Printed Circuit Boards by Iron-Based Catalyst

Article Preview

Abstract:

Pyrolysis appears to be a promising route allowing all-components recovery of the high value of potentially accessible products from waste printed circuit boards (WPCBs). However, bromine-containing pyrolysis oil must be dehalogenation, otherwise it will be a strong impact on thermal treatment. In the present study, an effective and environmental-friendly process using tri-iron tetroxide sorbent (Fe-O) to simultaneously degrade brominated epoxy resin from WPCBs was developed in pyrolysis process. The results show that brominated epoxy resins can be quickly decomposed under catalysis condition. Bromide concentration in pyrolysis oil decreases with the increase of the content of Fe-O. It can transfer the bromine from the gas phase and liquid phase to solid phase. When adding proportion to 1:1, bromine concentration of pyrolysis oil decreased by up to 98.2%. Fe-O can promote the decomposition of complex structure of benzene compounds to substance with simple structure. This study produces halogen free liquid products to recycle.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

589-593

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.S. Long, S.Y. Sun, S. Zhong, W.C. Dai, J.Y. Liu, W.F. Song. J. Hazard. Mater. 177(2010) 626-632.

Google Scholar

[2] H.F. Liang, S.Y. Sun, L.S. Long, S.Y. Li, Z. Zhu, J.Y. Liu, F. Yang, S. Zhong. CDCIEM. (2011).

Google Scholar

[3] M. P. Luda, A.I. Balabanovich. J. Anal. Appl. Pyrol. 90(2011) 63-71.

Google Scholar

[4] T. Bhaskar, J. Kaneko, A. Muto, Y. Sakata, E. Jakab, T. Matsui, Md. A. Uddin. J. Anal. Appl. Pyrol. 72(2004) 27-33.

Google Scholar

[5] M. Brebu, T. Bhaskar, A. Muto, Y. Sakata. Chemosphere, 64(2006) 1021-1025.

Google Scholar

[6] T. Bhaskar, T. Matsui, J. Kaneko, Md. A. Uddin, A. Muto, Y. Sakata. Green Chem. 4(2002) 372–375.

Google Scholar

[7] A. Hornung, S. Donner, A. Balabanovich, H. Seifert. J. Clean. Prod. 13(2005) 525-530.

Google Scholar

[8] X.N. Yang, L.S. Sun, J. Xiang, S. Hu, S. Su. Waste Manage. 33(2013) 462-473.

Google Scholar

[9] M.F. Xing, F.S. Zhang. Procedia Environ. Sci. 16(2012) 491-494.

Google Scholar

[10] G. Söderström, S. Marklund. Environ. Sci. Technol. 36(2002) 1959-(1964).

Google Scholar

[11] M. Blazsó, Zs. Czégény, Cs. Csoma. J. Anal. Appl. Pyrol. 64(2002) 249-261.

Google Scholar

[12] K. Peng, S.Q. Li, B. Chen, Q. Yao. J. Comb. Sci. Technol. 15(2009) 114-118.

Google Scholar

[13] W. J. Hall, P. T. Williams. J. Anal. Appl. Pyrol. 81(2008) 139-147.

Google Scholar

[14] Z. Arbeli, Z. Ronen, M. C. Díaz-Báez. Chemosphere. 64(2006) 1472-1478.

Google Scholar

[15] F. Barontini, V. Cozzani. J. Anal. Appl. Pyrol. 77(2006) 41-55.

Google Scholar