A Water-Soluble Iron Porphyrin as a Highly Efficient and Recyclable Catalyst for Peroxynitrite Decomposition

Article Preview

Abstract:

Peroxynitrite can be highly efficient catalyzed to harmless products with a turnover frequency 34.5 s-1 by micromolar concentration of water-soluble iron porphyrin, 5, 10, 15, 20-tetrakis-(4-carboxyphenyl)-porphyrin-Fe(III)-chloride (T(p-COOH)PPFe(III)Cl). Then we used spectroscopic and kinetic to study its decomposition mechanism and rate in bionic environment (25 mM sodium bicarbonate). The data reveal that this catalytic reaction is a recyclable reaction. Peroxynitrite is decomposed to nitrate (NO3-) and nitrite (NO2-) through forming [oxoFe(IV)]+ intermediate. Moreover, the [oxoFe(IV)]+ intermediate is reduced back to the starting porphyrin. It is noted that the oxidized iron porphyrin can be reduced by the reducing agent in the solution. In addition, we also find the catalytic rate constant is higher in the presence of sodium bicarbonate than the absence of sodium bicarbonate. They are 1.26×106 M-1s-1 and 1.17×106 M-1s-1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

617-624

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Pacher, J.S. Beckman and L. Liaudet: Physiol. Rev. Vol. 87 (2007), p.315.

Google Scholar

[2] H. Ischiropoulos: Arch. Biochem. Biophys. Vol. 356 (1998), p.1.

Google Scholar

[3] J.S. Beckman: Arch. Biochem. Biophys. Vol. 484 (2009), p.114.

Google Scholar

[4] S.R. Danielson and J.K. Andersen: Free Radic. Biol. Med. Vol. 44 (2008), p.1787.

Google Scholar

[5] J.S. Beckman, T.W. Beckman, J. Chen, P.A. Marshall, and B.A. Freeman: Proc. Natl. Acad. Sci. U S A Vol. 87 (1990), p.1620.

Google Scholar

[6] M.P. Murphy, M.A. Packer, J.L. Scarlett and S.W. Martin: General Pharmacology Vol. 31 (1998), p.179.

Google Scholar

[7] C. Szabo: Toxicol. Lett. Vol. 140-141 (2003), p.105.

Google Scholar

[8] J.T. Groves and S.S. Marla: J. Am. Chem. Soc. Vol. 117 (1995), p.9578.

Google Scholar

[9] M.K. Stern, M.P. Jensen and K. Kramer: J. Am. Chem. Soc. Vol. 118 (1996), p.8735.

Google Scholar

[10] Y. Suofu, J. Clark, J. Broderick, K.R. Wagner, T. Tomsick, Y. Sa and A. Lu: J. Neurochem. Vol. 115 (2010), p.1266.

Google Scholar

[11] C. Szabo, H. Ischiropoulos and R. Radi: Nat. Rev. Drug Discov. Vol. 6 (2007), p.662.

Google Scholar

[12] Y.J. Luo, C.X. Zhang, Y.B. She, R.G. Zhong and P. Wei: Reac. Kinet. Mech. Cat. Vol. 101 (2010), p.291.

Google Scholar

[13] J.E. Jee, S. Eigler, F. Hampel, N. Jux, M. Wolak, A. Zahl, G. Stochel, and R.V. Eldik: Inorg. Chem. Vol. 44 (2005), p.7717.

DOI: 10.1021/ic050924t

Google Scholar

[14] R.M. Uppu and W.A. Pryor: Anal. Biochem. Vol. 236 (1996), p.242.

Google Scholar

[15] R. Shimanovich, S. Hannah, V. Lynch, N. Gerasimchuk, T.D. Mody, D. Magda, J. Sessler and J.T. Groves: J. Am. Chem. Soc. Vol. 123 (2001), p.3613.

DOI: 10.1021/ja005856i

Google Scholar

[16] S.O. Kim, C.V. Sastri, M. Seo, J. Kim and W. Nam: J. Am. Chem. Soc. Vol. 127 (2005), p.4178.

Google Scholar

[17] Y. Huang, E. Vanover and R. Zhang: Chem. Commun. (Camb. ) Vol. 46 (2010), p.3776.

Google Scholar

[18] Z. Cong, T. Kurahashi and H. Fujii: Angew. Chem. Int. Ed. Engl. Vol. 50 (2011), p.9935.

Google Scholar

[19] T. Niwa and M. Nakada: J. Am. Chem. Soc. Vol. 134 (2012), p.13538.

Google Scholar

[20] J. Hagen: Industrial Catalysis: A Practical Approach (Wiley-VCH, Weinheim 2006).

Google Scholar

[21] J.A. Hunt, J. Lee and J.T. Groves: Chem. Biol. Vol. 4 (1997), p.845.

Google Scholar

[22] J. Su and J.T. Groves: J. Am. Chem. Soc. Vol. 131 (2009), p.12979.

Google Scholar

[23] P.A. Culp, D. Choi, Y. Zhang, J. Yin, P. Seto, S.E. Ybarra, M. Su, M. Sho, R. Steinle, M.H. Wong, F. Evangelista, J. Grove, M. Cardenas, M. James, E.D. Hsi, D.T. Chao, D.B. Powers, V. Ramakrishnan and R. Dubridge: A Clin. Cancer Res. Vol. 16 (2010).

DOI: 10.1158/1078-0432.c.6517582.v1

Google Scholar

[24] J. Su and J.T. Groves: Inorg. Chem. Vol. 49 (2010), p.6317.

Google Scholar

[25] T. Lauer, M. Preik and T. Rassaf: Proc. Natl. Acad. Sci. USA Vol. 98 (2001), p.12814.

Google Scholar

[26] I. Batinic-Haberle, I. Spasojevic, P. Hambright, L. Benov, A.L. Crumbliss and I. Fridovich: Inorg. Chem. Vol. 38 (1999), p.4011.

Google Scholar

[27] R. Shimanovich and J.T. Groves: Arch. Biochem. Biophys. Vol. 387 (2001), p.307.

Google Scholar

[28] S. Wang, S. Kotamraju, E. Konorev, S. Kalivendi, J. Joseph and B. Kalyanaraman: Biochem. J. Vol. 367 (2002), p.729.

Google Scholar