[1]
R. L. Bain,R. P. Overend. Biomass for heat and power. J. For. Prod. 2002, 52 (2), 12-19.
Google Scholar
[2]
E. Biagini, A. Fantei, L. Tognotti. Effect of the heating rate on the devolatilization of biomass residues. Thermochimica Acta 472 (2008) 55-63.
DOI: 10.1016/j.tca.2008.03.015
Google Scholar
[3]
M. Otero L.F. Calvo M.V. Gil, etal. Co-combustion of different sewage sludge and coal: A non-isothermal thermogravimetric kinetic analysis. Bioresource Technology, 2008, 99: 6311-6319.
DOI: 10.1016/j.biortech.2007.12.011
Google Scholar
[4]
B. Saha A.K. Ghoshal. Model-free kinetics analysis of waste PE sample. Thermochimica Acta, 2006, 451: 27-33.
DOI: 10.1016/j.tca.2006.09.001
Google Scholar
[5]
B. Saha A.K. Maiti A.K. Ghoshal. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample. Thermochimica Acta, 2006, 444: 46-52.
DOI: 10.1016/j.tca.2006.02.018
Google Scholar
[6]
M.E. Sanchez,M. Otero,X. Go'mez, etal. Thermogravimetric kinetic analysis of the combustion of biowastes. Renewable Energy, 2009, 34: 1622-1627.
DOI: 10.1016/j.renene.2008.11.011
Google Scholar
[7]
B. Ramajo-Escalera,A. Espina,J. R. Garc´ıa , etal. Model-free kinetics applied to sugarcane bagasse combustion. Thermochimica Acta, 2006, 448 : 111-116.
DOI: 10.1016/j.tca.2006.07.001
Google Scholar
[8]
J. J. M. O Â rfaÄo,F. J. A. Antunes,J. L. Figueiredo. Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel, 1999, 78: 349-358.
DOI: 10.1016/s0016-2361(98)00156-2
Google Scholar
[9]
E. Biagini,A. Fantei,L. Tognotti. Effect of the heating rate on the devolatilization of biomass residues. Thermochimica Acta, 2008, 472: 55-63.
DOI: 10.1016/j.tca.2008.03.015
Google Scholar
[10]
Friedman. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic Journal of polymer science, 1964, 6: 183.
DOI: 10.1002/polc.5070060121
Google Scholar
[11]
J.H. Flynn L.A. Wall. General Treatment of the Thermogravimetry of Polymers. Journal of research of the national bureau of standards—A. Physics and Chemistry, 1966, 70: 487-493.
DOI: 10.6028/jres.070a.043
Google Scholar
[12]
T. Ozawa1. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 1965, 38: 1881-1886.
DOI: 10.1246/bcsj.38.1881
Google Scholar
[13]
S. Vyazovkin,A. I. Lesnikovick. Transformation of degree of conversion against temperature into degree of conversion against time kinetic data. Russian Journal of Physical Chemistry , 1998, 62: 1525-1527.
Google Scholar
[14]
H.E. Kissinger. Variation of peak temperature with heating ratein differential thermal analysis. Journal of Research of the National Bureau of Standards, 1956, 57: 2712.
DOI: 10.6028/jres.057.026
Google Scholar
[15]
F. Shafizadeh,W. F. DeGroot. In Thermal Uses and Properties of Carbohydrates and Lignins, Academic, New York, 1976, pp.1-6.
Google Scholar
[16]
F. Yao, Q.L. Wu ,Y. Lei , etal. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability, 2008, 93: 90-98.
DOI: 10.1016/j.polymdegradstab.2007.10.012
Google Scholar
[17]
J. Malek . The kinetic analysis of non-isothermal data. Thermochimica Acta, 1992, 200: 257-269.
DOI: 10.1016/0040-6031(92)85118-f
Google Scholar
[18]
J. Malek . A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochimica Acta, 1989, 138: 337-346.
DOI: 10.1016/0040-6031(89)87270-3
Google Scholar