Decomposition Kinetics of Switchgrass: Estimating Activation Energy

Article Preview

Abstract:

TG analysis was used to investigate the thermal decomposition of switchgrass, which is a potential gasification feedstock. 10 mg switchgrass sample with the particles between 0.45 and 0.70 mm was linearly heated to 873 K at heating rates of 10, 20, 30 K/min, respectively, under high-purity nitrogen. The Kissinger method and three isoconversional methods including Friedman, Flynn-wall-Ozawa, Vyazovkin and Lenikeocink methods were used to estimate the apparent activation energy of switchgrass. With the three isoconversional methods, it can be concluded that the activation energy increases with increasing conversion. The four model free methods reveal activation energies in the range of 70-460 kJ/mol. These activation energy values provide the basic data for the thermo-chemical utilization of the switchgrass.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

726-733

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. L. Bain,R. P. Overend. Biomass for heat and power. J. For. Prod. 2002, 52 (2), 12-19.

Google Scholar

[2] E. Biagini, A. Fantei, L. Tognotti. Effect of the heating rate on the devolatilization of biomass residues. Thermochimica Acta 472 (2008) 55-63.

DOI: 10.1016/j.tca.2008.03.015

Google Scholar

[3] M. Otero L.F. Calvo M.V. Gil, etal. Co-combustion of different sewage sludge and coal: A non-isothermal thermogravimetric kinetic analysis. Bioresource Technology, 2008, 99: 6311-6319.

DOI: 10.1016/j.biortech.2007.12.011

Google Scholar

[4] B. Saha A.K. Ghoshal. Model-free kinetics analysis of waste PE sample. Thermochimica Acta, 2006, 451: 27-33.

DOI: 10.1016/j.tca.2006.09.001

Google Scholar

[5] B. Saha A.K. Maiti A.K. Ghoshal. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample. Thermochimica Acta, 2006, 444: 46-52.

DOI: 10.1016/j.tca.2006.02.018

Google Scholar

[6] M.E. Sanchez,M. Otero,X. Go'mez, etal. Thermogravimetric kinetic analysis of the combustion of biowastes. Renewable Energy, 2009, 34: 1622-1627.

DOI: 10.1016/j.renene.2008.11.011

Google Scholar

[7] B. Ramajo-Escalera,A. Espina,J. R. Garc´ıa , etal. Model-free kinetics applied to sugarcane bagasse combustion. Thermochimica Acta, 2006, 448 : 111-116.

DOI: 10.1016/j.tca.2006.07.001

Google Scholar

[8] J. J. M. O Â rfaÄo,F. J. A. Antunes,J. L. Figueiredo. Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel, 1999, 78: 349-358.

DOI: 10.1016/s0016-2361(98)00156-2

Google Scholar

[9] E. Biagini,A. Fantei,L. Tognotti. Effect of the heating rate on the devolatilization of biomass residues. Thermochimica Acta, 2008, 472: 55-63.

DOI: 10.1016/j.tca.2008.03.015

Google Scholar

[10] Friedman. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic Journal of polymer science, 1964, 6: 183.

DOI: 10.1002/polc.5070060121

Google Scholar

[11] J.H. Flynn L.A. Wall. General Treatment of the Thermogravimetry of Polymers. Journal of research of the national bureau of standards—A. Physics and Chemistry, 1966, 70: 487-493.

DOI: 10.6028/jres.070a.043

Google Scholar

[12] T. Ozawa1. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 1965, 38: 1881-1886.

DOI: 10.1246/bcsj.38.1881

Google Scholar

[13] S. Vyazovkin,A. I. Lesnikovick. Transformation of degree of conversion against temperature into degree of conversion against time kinetic data. Russian Journal of Physical Chemistry , 1998, 62: 1525-1527.

Google Scholar

[14] H.E. Kissinger. Variation of peak temperature with heating ratein differential thermal analysis. Journal of Research of the National Bureau of Standards, 1956, 57: 2712.

DOI: 10.6028/jres.057.026

Google Scholar

[15] F. Shafizadeh,W. F. DeGroot. In Thermal Uses and Properties of Carbohydrates and Lignins, Academic, New York, 1976, pp.1-6.

Google Scholar

[16] F. Yao, Q.L. Wu ,Y. Lei , etal. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability, 2008, 93: 90-98.

DOI: 10.1016/j.polymdegradstab.2007.10.012

Google Scholar

[17] J. Malek . The kinetic analysis of non-isothermal data. Thermochimica Acta, 1992, 200: 257-269.

DOI: 10.1016/0040-6031(92)85118-f

Google Scholar

[18] J. Malek . A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochimica Acta, 1989, 138: 337-346.

DOI: 10.1016/0040-6031(89)87270-3

Google Scholar