Alignment and Surface Modification of Multiwall Carbon Nanotubes Polymeric Composites

Article Preview

Abstract:

Polymer matrices add carbon nanotubes have significantly improved mechanical and electrical properties at very low carbon nanotube loading. That mechanical and electrical properties of aligned composites are better than those of random ones has been demonstrated in past studies. The non-conductive barriers of surface contaminants and weakly bound polymer layers will deform on the surface of composite resulted from the effects of micro gravity and oxidization. Addition of the adaptive plasma modification makes improvement in the surface properties of the composites is necessary. In this study, we actively align and network multiwall carbon nanotubes (MWCNTs) in a polymer matrix, then adopt O2/CF4 radio frequency (RF) plasma to modify the surface of polymeric composite. MWCNTs were aligned using an AC electric field to elicit dipolar interactions among the nanotubes in a viscous matrix following immobilization by curing under continuous application of an anisotropic electric field, and the barriers of surface contaminants and weakly bound polymer layers can be reduced to the smallest degree or eliminated by RF plasma modification. Consequently, the MWCNTs polymeric composite amplify the flexural modulus, wear resistance, and electrical conductivity in the reality.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

872-881

Citation:

Online since:

January 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. M. Ajayan: Chem. Rev. Vol. 99 (1999), p.1787.

Google Scholar

[2] Y. Zou, Y. Feng, L. Wang, and X. Liu: Carbon Vol. 42 (2004), p.271.

Google Scholar

[3] C. Park, J. Wilkinson, S. Banda, Z. Ounaies, K. E. Wise, G. Sauti, P. T. Lillejei, and J. S. Harrison: J. Polym. Sci., Part B Vol. 44 (2006), p.1751.

Google Scholar

[4] D. Qian, E.C. Dickey, R. Andrews, and T. Rantell: Appl. Phys. Lett. Vol. 76 (2000), p.2868.

Google Scholar

[5] C. Park C: Chemical Physical Letters Vol. 364 (2002), p.303.

Google Scholar

[6] H.T. Ham, Y.S. Choi, and J.I. Chung: J. Colloid and Interface Sci. Vol. 286 (2005), p.216.

Google Scholar

[7] J.P. Salvetat, A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, and L. Forro: Phys. Rev. Lett. Vol. 82 (1999), p.944.

DOI: 10.1103/physrevlett.82.944

Google Scholar

[8] E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Haik, M.Y. Hussaini, H. Garmestani, D. Li, and K.J. Dahmen: Appl. Phys. Vol. 94 (2003), p.6034.

Google Scholar

[9] J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A.H. Windle.: Polymer Vol. 40 (1999), p.5967.

DOI: 10.1016/s0032-3861(99)00166-4

Google Scholar

[10] X.L. Xie, Y.W. Mai, and X.P. Zhou.: Mater. Sci. Eng. R Vol. 49 (2005), p.89.

Google Scholar

[11] L. Jin, C. Bower, and O. Zhou: Appl. Phys. Lett. Vol. 73 (1998), p.1197.

Google Scholar

[12] E.S. Choi, J.S. Brooks, D.L. Eato, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, and K.J. Dahmen: Appl. Phys. Vol. 94 (2003), p.5451.

Google Scholar

[13] S. Kumar, T. D. Dang, F. E. Arnold, A. R. Bhattacharyya, B. G. Min, X. Zhang, R. A. Vaia, C. Park, W. W. Adams, R. H. Hauge, R. E. Smalley, S. Ramesh, and P. A. Willis: Macromolecules Vol. 35 (2002), p.9039.

DOI: 10.1021/ma0205055

Google Scholar

[14] K. Yamamoto, S. Akita, and Y. Nakayama: Jpn. J. Appl. Phys. Vol. 35 (1996), p. L917.

Google Scholar

[15] K. Yamamoto, S. Akita, and Y. Nakayama: J. Phys. D Vol. 31 (1998), p. L34.

Google Scholar

[16] X. Q. Chen, T. Saito, H. Yamada, and K. Matsushige: J. Appl. Phys. Lett. Vol. 78 (2001), p.3714.

Google Scholar

[17] L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui: Appl. Phys. Lett. Vol. 80 (2002), p.3826.

Google Scholar

[18] R. Krupke, F. Hennrich, H. V. Löhneysen, and M. M. Kappes: Science Vol. 301 (2003), p.344.

Google Scholar

[19] M. W. Wang, T. C. Hsu, and C. H. Weng: Eur. Phys. J. Appl. Phys. Vol. 42 (2008), p.69.

Google Scholar

[20] T. Prasse, J. Y. Cavaillé, and W. Bauhofer: Compos. Sci. Technol. Vol. 63 (2003), p.1835.

Google Scholar

[21] C. A. Martin, J. K. W. Sandler, A. H. Windle, M. K. Schwarz, W. Bauhofer, K. Schulte, and M.S.P. Shaffer: Polymer Vol. 46 (2005), p.877.

DOI: 10.1016/j.polymer.2004.11.081

Google Scholar

[22] M. W. Wang: Jap. J. Appl. Phys. Vol. 48 (2009), p.35002.

Google Scholar

[23] T. B. Jones: Dielectromechanics, Cambridge University Press, Cambridge, U.K. (1995).

Google Scholar

[24] H. A. Pohl: J. Appl. Phys. Vol. 22 (1951), p.869.

Google Scholar

[25] J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A.H. Windle.: Polymer Vol. 40 (1999), p.5967.

DOI: 10.1016/s0032-3861(99)00166-4

Google Scholar

[26] H. Morgan and N. G. Green: AC Electrokinetics: Colloids and Nanoparticle., Research Studies Press, Hertfordshire, U.K. (2003).

Google Scholar

[27] M. P. Hughes, H. Morgan, F. J. Rixon, J. P. H. Burt, and R. Pethig: Biochim. Biophys. Acta Vol. 119 (1998), p.1425.

Google Scholar

[28] CRC Handbook of Chemistry and Physics, ed. D. R. Lide (CRC Press, Boca Raton, FL, 1994) 88th ed., Sec. 13.

DOI: 10.1021/ja077011d

Google Scholar