Efffect of Spark Plasma Sintering Temperature on Mechanical Properties of In Situ TiB/Ti Composites

Article Preview

Abstract:

The in-situ synthesized TiB reinforced titanium matrix composites have been prepared by spark plasma sintering technique at 950–1250°C, using mixtures of 10wt% TiB2 and 90wt% Ti powders. The effects of the sintering temperature on the mechanical properties (Vickers microhardness, yield strength and Young`s modulus) of the composites were investigated. SEM was used to analyze the reaction process and the microstructure of the compacts synthesized at different sintering temperatures. The results indicated that the in situ synthesized TiB grow rapidly with increasing sintering temperature. The composite sintered at 1250°C have the highest relative density of 99.2%. However, the composite sintered at 950°C exhibits the best Vickers microhardness of 4.64GPa and yield strength of 989MPa, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

923-926

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.O. Soboyejo, R.J. Lederich and S.M.L. Sastry: Acta mater, Vol. 42 (1994) No. 8, p.2579.

Google Scholar

[2] F.C. Ma, P. Liu, W. Li, X.K. Liu, X. H Chen and D. Zhang: Materials Transactions, Vol. 55 (2010) No. 7, p.1277.

Google Scholar

[3] S.C. Tjong and Z.Y. Ma: Mater. Sci. Eng., R, Vol. 29 (2000) No. 3-4, p.49.

Google Scholar

[4] S. Gorsse, J.P. Chaminade and Y.L. Petitcorps: Appl. Sci. Manuf., Vol. 29 (1998) No. 9-10, p.1229.

Google Scholar

[5] S. Tamirisakandala, D.B. Miracle, R. Srinivasan and J.S. Gunasekera: Adv. Mater. Proc, Vol. 162 (2006), p.41.

Google Scholar

[6] C.J. Boehlert,S. Tamirisakandala W.A. Curtin and D.B. Miracle: Scripta Mater, Vol. 61 (20009) No. 3, p.245.

Google Scholar

[8] S. Gorsse and D.B. Miracle: Acta Mater, Vol. 51 (2003) No. 9, p.2427.

Google Scholar

[9] W.L. Bradbury and E.A. Olevsky: Scripta Mater, Vol. 63 (2010) No. 1, p.77.

Google Scholar

[10] M. Belmonte, M.I. Osendi and P. Miranzo: Scripta Mater, Vol. 65 (2011) No. 3, p.273.

Google Scholar

[11] E. Khaleghi, Y.S. Lin, M.A. Meyers and E.A. Olevskya: Scripta Mater, Vol. 63 (2010) No. 6, p.577.

Google Scholar

[12] L. Ramond, G. Bernard-Granger, A. Addad and C. Guizard: Acta Mater, Vol. 58 (2010) No. 15, p.5120.

DOI: 10.1016/j.actamat.2010.05.047

Google Scholar

[13] J.G. Santanach, A. Weibel, C. Estourne`s, Q. Yang, Ch. Laurent and A. Peigney: Acta Mater, Vol. 59 (2011) No. 4, p.1400.

Google Scholar

[14] Z.H. Zhang, L. Qi, X.B. Shen, F.C. Wang and S.K. Lee: Mater. Sci. Eng., A, Vol. 573 (2013), p.12.

Google Scholar

[15] T. Hungria, H. Amorin, M. Alguero and A. Castro: Scripta Mater, Vol. 64 (2011) No. 1, p.97.

Google Scholar

[16] Y. Long, H.Y. Zhang, T. Wang, X.L. Huang, Y.Y. Li, J.S. Wu and H.B. Chen: Mater. Sci. Eng., A, Vol. 585 (2013) , p.408.

Google Scholar

[17] K. Rajan, V.S. Sarma, T.R.G. Kutty and B.S. Murty: Mater. Sci. Eng., A, Vol. 558 (2012), p.492.

Google Scholar