Fabrication of Gold Nanoflowers and the Surface Enhanced Raman Scattering Performance

Article Preview

Abstract:

Gold nanoflowers were simply produced in aqueous solution containing peptides (NH2-Leu-Aib-Trp-Ome) and sodium dodecyl benzene sulfonate. HAuCl4 was reduced by peptides. Scanning electron microscopy and transmission electron microscopy images show flower-like nanoparticles were about 50-100 nm. X-ray diffraction and electron diffraction patterns suggest face-centred cubic structures for these gold branched nanoparticles. There are three main stages in the growth of the gold nanoparticles: nanocrystal, aggregated nanoparticle, and flower-like nanostructure. The performance of the gold nanoflowers when used for surface enhanced Raman scattering was explored using crystal violet as the probe, which indicates that the these gold nanoflowers are promising for use as excellent surface enhanced Raman scattering substrates.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

944-947

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Koposova, A. Kisner, G. Shumilova, Y. Ermolenko, A. Offenh Usser, Y. Mourzina: J. Phys. Chem. C, Vol 117 (2013), p.13944.

DOI: 10.1021/jp401764p

Google Scholar

[2] S. T. Sivapalan, B. M. Devetter, T. K. Yang, T. van Dijk, M. V. Schulmerich, P. S. Carney, R. Bhargava, C. J. Murphy: ACS Nano, Vol 7 (2013), p. (2099).

DOI: 10.1021/nn305710k

Google Scholar

[3] J. Toudert, R. Serna, M. Jim Nez De Castro: J. Phys. Chem. C, Vol 116 (2012), p.20530.

Google Scholar

[4] I. Pardinas-Blanco, C. E. Hoppe, Y. Pineiro-Redondo, M. A. Lopez-Quintela, J. Rivas: Langmuir, Vol 24 (2008), p.983.

Google Scholar

[5] S. Qu, H. Li, T. Peng, Y. Gao, J. Qiu, C. Zhu: Mater. Lett. Vol 58 (2009), p.1427.

Google Scholar

[6] X. Kou, Z. Sun, Z. Yang, H. Chen, J. Wang: Langmuir, Vol 25 (2009), p.1692.

Google Scholar

[7] M. H. Huang, P. H. Lin: Adv. Funct. Mater. Vol 22 (2012), p.14.

Google Scholar

[8] T. Huang, F. Meng, L. Qi: J. Phys. Chem. C, Vol 113 (2009), p.13636.

Google Scholar

[9] B. K. Jena, C. R. Raj: Chemistry of Materials, Vol 20 (2008), p.3546.

Google Scholar

[10] J. Xie, Q. Zhang, J. Y. Lee, D. I. Wang: ACS Nano, Vol 2(2008), p.2473.

Google Scholar

[11] D. Toroz, S. Corni: Nano Lett., Vol 11 (2011), p.1313.

Google Scholar

[12] C. Song, G. Zhao, P. Zhang, N. L. Rosi: J. Am. Chem. Soc., Vol 132 (2010), p.14033.

Google Scholar

[13] S. Diamanti, A. Elsen, R. Naik, R. Vaia: J. Phys. Chem. C, Vol 113 (2009), p.9993.

Google Scholar

[14] S. Si, T. K. Mandal: Chem. Eur. J., Vol 13 (2007), p.3160.

Google Scholar

[15] Y. Ren, C. Xu, M. Wu, M. Niu, Y. Fang: Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol 380 (2011), p.222.

Google Scholar