[1]
H.J. Kim, S.K. Youn, Three dimensional analysis of high frequency induction welding of steel pipes with impeder, J. Manuf. Sci. Eng., 130, 3, (2008).
DOI: 10.1115/1.2844586
Google Scholar
[2]
G.R. Stewart, A.M. Elwazri, R. Varano, N. Pokutylowicz, S. Yue, J.J. Jonas, Shear Punch Testing of Welded Pipeline Steel. Materials Science and Engineering A420 ( 2006) 115-121.
DOI: 10.1016/j.msea.2006.01.081
Google Scholar
[3]
K.E. Easterling, Introduction to the Physical Metallurgy of Welding, Butterworth-Hermann Ltd., Oxford, (1992).
Google Scholar
[4]
G. Spanos, R.W. Fonda, R.A. Vandermeer, A. Matuszeski, Microstructural changes in HSLA-100 steel thermally cycled to simulate the heat-affected zone during welding, Metall. Mater. Trans. 26A ( 1995 ) 3277-3293.
DOI: 10.1007/bf02669455
Google Scholar
[5]
P. Yan, Ö. E. Güngör, P. Thibaux, Harshad K.D.H. Bhadeshia, Crystallographic Texture of Induction-Welded and Heat-Treated Pipeline Steel, Adv. Mat. Research, 651 (2010) 89-91.
DOI: 10.4028/www.scientific.net/amr.89-91.651
Google Scholar
[6]
O. Grong, Metallurgical Modelling of Welding, London, The Institute of Materials, England, 1994, ISBN 0-901716-37-5.
Google Scholar
[7]
S. Kou, Welding Metallurgy, John Wiley e Sons, 2nd ed. New Jersey, USA, (2003).
Google Scholar
[8]
S. Lars-Eric, Control of Microstructures and Properties in Steel Arc Welds, Library of Congress Cataloging-in Published Data. (1994).
Google Scholar
[9]
A. Güral, B. Bostan, A.T. Özdemu, Heat treatment in two phase region and its effect on microstructure and mechanical strength after welding of a low carbon steel, Materials and Design 28 (2007) 897-903.
DOI: 10.1016/j.matdes.2005.10.005
Google Scholar
[10]
L. Yajiang, Z. Yonglan, S. Bin and W. Juang, TEM observation and fracture morphology in the CGHAZ of a new 0Cr18Mo2Ti ferritic stainless steel , Bull. Mater. Sci., 25, 5, (2002). 361–366.
DOI: 10.1007/bf02708010
Google Scholar