The Preparation of Porous TiO2 Nanostructure by Triblock Copolymers Co-Templating Method of TiOSO4 Solution Derived from Ilmenite Ore

Article Preview

Abstract:

Porous titanium dioxide (TiO2) nanostructure has been successfully synthesized by a modified solgel method using non-ionic triblock copolymer pluronic F-127 as surfactant template and titanylsulfate (TiOSO4) solution as the inorganic precursor derived from the sulfuric process of Bangka-Indonesia ilmenite ore. The resulting nanostructure samples were characterized by XRD, SEM, TEM and UV-Vis spectroscopy. The results showed that porous titania particles have sphere-like shape and can be indexed as the anatase phase with average crystallite size of about 5-7 nm, narrow pore size distribution with an averange pore diameter of about 3-5 nm and band gap energy in the range of 3.10 3.16 eV.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

132-138

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[2] A. Petrozza, C. Groves, H.J. Snaith, J. Am. Chem. Soc. 130 (2008), p.12912.

Google Scholar

[3] W. Yue, X. Xu, J.T.S. Irvine, P.S. Attidekou, C. Liu, H. He, D. Zhao, W. Zhou, Chem. Mater. 21 (2009), p.2540.

Google Scholar

[4] H.S. Yun, K. Miyazawa, H. Zhou, I. Homma, M. Kuwabara, Adv. Mater. 12 (2001), p.1183.

Google Scholar

[5] H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, Y. Lu, (2007), J. Am. Chem. Soc. 129, p.4538.

Google Scholar

[6] H. Lin,X. Ji, Q. Chen, Y. Zhou, C.E. Vanks, K. Wu, Electrochem. Commun. 11 (2009) (1990).

Google Scholar

[7] A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63 (2008), p.515.

Google Scholar

[8] C. Tian, Z. Zhang, J. Hou, N. Luo, Mater. Lett. 62 (2008), p.77.

Google Scholar

[9] S. Hirobumi, O. Taku, M. Tatsuya, O. Takahiro, S. Hideki, A. Masahiko, J. Am. Chem. Soc. 127 (16) (2005), p.396.

Google Scholar

D.M. Antonelli, J.Y. Angew. Chem., Int. Ed. Engl. 34 (2995), p. (2014).

Google Scholar

[1] P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Chem. Mater. 11 (1999), p.2813.

Google Scholar

[2] L.H. Kao, T. C. Hsu, K.K. Cheng, J. Colloid Interf. Sci. 341 (2010), p.359.

Google Scholar

[3] Z.R. Ismagilov, E.V. Matus, A.M. Yakutova, L.N. Protasova, I.Z. Ismagilov, M.A. Kerzhentsev, E.V. Rebrov, J.C. Schouten, Catal. Today1475 (2009), p.581.

DOI: 10.1016/j.cattod.2009.07.046

Google Scholar

[4] L.H. Lalasari, A.H. Yuwono, F. Firdiyono, N.T. Rochman, S. Harjanto, B. Suharno, Appl. Mech. Mater. Vol. 391 (2013) p.34.

Google Scholar

[15] B.D. Cullity: Elements of X-ray Diffraction, 2nd ed., Addison-Wesley Reading, Massachusetts, (1978).

Google Scholar

[6] C. Suryanarayana, M.G. Norton, X-Ray Diffraction: A Practical Approach, Plenum Press, New York, (1998).

Google Scholar

[7] C. Suwanchawalit, S. Wongnawa, J. Nanopart Res (2010) 12, p.2895.

Google Scholar

[8] G. Zhang, Y. C. Zhang, M. Nadagouda, C. Han, K. O'Shea, S. M. El-Sheikh, A. A. Ismail, D. D. Dionysiou, Appl. Catal. B: Environ. 144 (2014), p.614.

Google Scholar