Size-Dependence of Photoluminescence Property of ZnO Nanoparticles

Article Preview

Abstract:

Nanometer-sized ZnO crystals with the diameter from 20 nm to 110 nm were prepared by homogenous precipitation method (HPM). The photoluminescence (PL) spectra of as-prepared nanoparticles under excitation at the wavelength of 320 nm were detected. The PL spectra were fitted with Gaussian curves, in which a good fitting consisting of six Gaussian peaks was obtained. We observed that the multi-peak centers do not change much, while the relative amplitude of Gaussian combination to the band-to-band emission decreases rapidly with the increased grain size. It shows that the broadband emission at the lower energy is associated with the surface states.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

143-146

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. R. Qiu, K. S. Wong, M. M. Mu, W. J. Lin, and H. F. Xu, Appl. Phys. Lett. Vol. 84 (2004), p.2739.

Google Scholar

[2] Sudheesh K. Shukla, Eric S. Agorku, Hemant Mittal, and Ajay K. Mishra, Chemical Papers, Vol. 68 (2014), p.217.

Google Scholar

[3] A. B. Djurisic, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, Appl. Phys. Lett. Vol. 84 (2004), p.2635.

Google Scholar

[4] B. Guo, Z. R. Qiu, K. S. Wong, Appl. Phys. Lett. Vol. 82 (2003), p.2290.

Google Scholar

[5] H. T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S. X. Li, and E. E. Haller, Appl. Phys. Lett. Vol. 82 (2003), p. (2023).

Google Scholar

[6] G. Z. Xing, D. D. Wang, B. Yao, A. Q. Lloyd Foong Nien, and Y. S. Yan, Chem. Phys. Lett., Vol. 515 (2011), p.132.

Google Scholar

[7] L. Bergman, X. B. Chen, J. L. Morrison, J. Huso, and A. P. Purdy,J. Appl. Phys., Vol. 96 (2004), p.675.

Google Scholar

[8] S. Deb, P. K. Kalita, and P. Datta, Indian Journal of Physics, Vol. 87 (2013), p.1177.

Google Scholar

[9] R. T. Senger, and K. K. Bajaj, Phys. Rev.B. Vol. 68 (2003), p.045313.

Google Scholar

[10] S. Deb, P. K. Kalita, and P. Datta, Indian Journal of Physics, Vol. 87 (2013), p.1177.

Google Scholar

[11] H. P. Maruska, N. Fereydoon, and N. M. Kalkhoran, Appl. Phys. Lett. Vol. 63 (1993), p.45.

Google Scholar

[12] H. Shalish, H. Temhin, V. Narayanamurti, Phys. Rev. B Vol. 69 (2004), p.245401.

Google Scholar

[13] Y. H. Xie, W.L. Wlison, F. M. Ross, J. A. Mucha, E. A. Fitzgerald, J. M. Macaulay, and T. D. Harris, J. Appl. Phys. Vol. 71(1992), p.2403.

Google Scholar

[14] M. G. Bawendi, W. L. Wilson, P. J. Carroll, and L. E. Brus, J. Chem. Phys. Vol. 96 (1990), p.946.

Google Scholar

[15] Y. Kanemitesu, Phys. Rev.B. Vol. 49 (1994), p.16845.

Google Scholar

[16] F. L. Zhao, Z. Gong, S. D. Liang, N. S. Xu, S. Z. Deng, J. Chen, H. Z. Wang, Appl. Phys. Lett. Vol. 85 (2004), p.914.

Google Scholar

[17] H. Shalish, H. Temhin, V. Narayanamurti, Phys. Rev. B Vol. 69 (2004), p.245401.

Google Scholar

[18] T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, Appl. Phys. Lett. Vol. 81 (2002), p.1231.

Google Scholar