2D Assembly of Palladium Nanoparticles and AFM Characterization

Article Preview

Abstract:

The two-dimensional (2D) assembly of the palladium nanoparticles (Pd NPs) was studied in this work. The cubic Pd NPs were successfully synthesized and assembled on mica and silicon wafer in the dip-coating way. The morphology of the Pd NPs and the topography of the Pd NPs assembly on the substrates were characterized with transmission electron microscopy (TEM) and atomic force microscopy (AFM). In the process of the fabrication, the excess cetyltrimethylammonium bromide (CTAB) was removed with the deposition-redispersion strategy, the UV-vis spectra and zeta-potential of the Pd NPs colloid were measured. It was found that the assembly and AFM characterization of the Pd NPs were affected negatively by the presence of excess CTAB. The hydrophilic property of the substrate is the crucial factor to control the 2D assembly of the Pd NPs. Compared with the washed silicon wafer, mica is ultra-hydrophilic and can attract more Pd NPs.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

161-166

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. N. Lewis: Chem. Rev. Vol. 93 (1993), p.2693.

Google Scholar

[2] T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein and M. A. El-Sayed: Science Vol. 272 (1996), p. (1924).

Google Scholar

[3] M. A. El-Sayed: Acc. Chem. Res. : Vol. 34 (2001), p.257.

Google Scholar

[4] L. A. Peyser, A. E. Vinson, A. P. Bartko and R. M. Dickson: Science Vol. 291 ( 2001), p.103.

Google Scholar

[5] X. Y. Zhang, M. A. Young, O. Lyandres and R. P. V. Duyne: J. Am. Chem. Soc. Vol. 127 (2005), p.4484.

Google Scholar

[6] J. Y. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li and Y. N. Xia: Nano. Lett. Vol. 5 (2005), p.473.

DOI: 10.1021/nl047950t

Google Scholar

[7] C. Beta, A. S. Mikhailov, H. H. Rotermund and G. Ertl: Europhys. Lett. Vol. 75 (2006), p.868.

Google Scholar

[8] K. C. Grabar, K. J. Allison, B. E. Baker, R. M. Bright, K. R. Brown, R. G. Freeman, A. P. Fox, C. D. Keating, M. D. Musick and M. J. Natan: Langmuir Vol. 12 (1996 ), p.2353.

DOI: 10.1021/la950561h

Google Scholar

[9] R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney and R. G. Osifchin: Science Vol. 273 (1996), p.1690.

DOI: 10.1126/science.273.5282.1690

Google Scholar

[10] S. H. Sun, C. B. Murray, D. Weller, L. Folks and Moser A. : Science Vol. 287 (2000), p. (1989).

Google Scholar

[11] T. Teranishi, S. Hasegawa, T. Shimizu and M. Miyake: Adv. Mater. Vol. 13 (2001), p.1699.

Google Scholar

[12] M. N. Martin, J. I. Basham, P. Chando and S. K. Eah: Langmuir Vol. 26 (2010), p.7410.

Google Scholar

[13] D. G. Schultz, X. M. Lin, D. X. Li, J. Gebhardt, M. Meron, P. J. Viccaro and B . Lin : J. Phys. Chem. B Vol. 110 (2006), p.24522.

DOI: 10.1021/jp063820s

Google Scholar

[14] X. M. Lin, H. M. Jaeger, C. M. Sorensen and K. J. Klabunde: J. Phys. Chem. B Vol. 105 (2001), p.3353.

Google Scholar

[15] S. Narayanan and J. D. Wang: Phys. Rev. Lett. Vol. 93 (2004) , p.135503.

Google Scholar

[16] T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten and H. M . Jaeger: Nat. Mater. Vol. 5 (2006), p.265.

Google Scholar

[17] K. C. Grabar, K. R. Brown, C. D. Keating, S. J. Stranick, S. L. Tang and M. J. Natan: Anal. Chem. Vol. 69 (1997), p.471.

Google Scholar

[18] Y. L. Gu, H. Xie, J. X. Gao, D. X. Liu, C. T. Williams, C. J. Murphy and H. J. Ploehn: Langmuir Vol. 21 (2005), p.3122.

Google Scholar

[19] W. X. Niu, Z. Y. Li, L. H. Shi, X. Q. Liu, H. J. Li, S. Han, J. A. Chen and G. B. Xu: Cryst. Growth. Des. Vol. 8 (2008 ), p.4440.

Google Scholar

[20] R. Wang, H. He, L. C. Liu, H. X. Dai and Z. Zhao: Catal. Sci. Technol. Vol. 2 (2012), p.575.

Google Scholar

[21] Y. J. Xiong, H. G. Cai, B. J. Wiley, J. G. Wang, M. J. Kim and Y. N. Xia: J. Am. Chem. Soc. Vol. 129 (2007), p.3665.

Google Scholar

[22] X. H. Zi, R. Wang, L. C. Liu, H. X. Dai, G. Z. Zhang and H. He: Chin. J. Catal. Vol. 32 (2011), p.827.

Google Scholar

[23] B. Veisz and Z. Király: Langmuir Vol. 19 (2003), p.4817.

Google Scholar

[24] B. Lindman, M. C. Puyal, N. Kamenka, R. Rymdén and P. Stilbs: J. Phys. Chem. Vol. 88 (1984), p.5048.

Google Scholar

[25] S. B. Velegol, B. D. Fleming, S. Biggs, E. J. Wanless and R. D. Tilton: Langmuir Vol. 16 (2000), p.2548.

Google Scholar

[26] V. K. Paruchuria, A. V. Nguyenb and J. D. Millera: Colloids Surf. A. Vol. 250 (2004), p.519.

Google Scholar

[27] W. L. Cheng, S. J. Dong and E. K. Wang: Electrochem Commun. Vol. 4 (2002), p.412.

Google Scholar

[28] S. Perkin, N. Kampf and J. Klein: J. Phys. Chem. B Vol. 109 (2005), p.3832.

Google Scholar

[29] M. W. Rutland and J. L. Parker: Langmuir Vol. 10 (1994), p.1110.

Google Scholar

[30] W. A. Ducker and E. J. Wanless: Langmuir Vol. 15 (1999), p.160.

Google Scholar