Reliable Solvothermal Growth of Diverse Heterostructures Based on CdS Nanowires

Article Preview

Abstract:

In the present study, the heterostructures of ZnO Nanoparticle (NP)/CdS nanowire (NW), SnO2NP/CdS NW, NiS NP/CdS NW, FeS NP/CdS NW, Ag2S NP/CdS NW, and Au NP/CdS NW have been successfully fabricated via the two-stage solvothermal process. Field-emission scan electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were adopted to characterize the as-prepared products. The optical properties of the as-obtained heterostructures were separately investigated. New insights into understanding and controlling the synthesis of different NW heterostructures are demonstrated in the reliable solvothermal route. We demonstrate that CdS NWs synthesized for 2h are the bifunctional mediator acting as catalyst or active spot for the growth of NW heterostructures Furthermore, understanding and controlling this phenomenon is a great asset for the realization of the formation mechanism of the NW heterostructures and opens up new ways toward for construction of other semiconductor heterostructures with novel properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

174-180

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. T. Zhang, Y. Tang, K. Lee, and Q. Y. Min, Science 327, 1634(2010).

Google Scholar

[2] C. H. Kuo, T. E. Hua, and M. H. Huang, J Am. Chem. Soc. 131, 17871(2009).

Google Scholar

[3] R. Buonsanti, V. Grillo, E. Carlino, C. Giannini,  F. Gozzo, M. Garcia-Hernandez,  M. A. Garcia, R. Cingolani, and P. D. Cozzoli, J Am. Chem. Soc. 132, 2437(2010).

DOI: 10.1021/ja910322a

Google Scholar

[4] W. Chiu, P. Khiew, M. Cloke, D. Isa,  H. Lim,  T. Tan,  N. Huang,   S. Radiman, R. Abd-Shukor,   M. A. A. Hamid, and Chia, C. H. J Phys. Chem. C 114, 8212(2010).

DOI: 10.1021/jp100848m

Google Scholar

[5] K. P. Acharya, N. N. Hewa-Kasakarage, T. R. Alabi, I. Nemitz,  E. Khon,   B. Ullrich, P. Anzenbacher,  and M. Zamkov, J Phys. Chem. C 114, 18291(2010).

DOI: 10.1021/jp1085476

Google Scholar

[6] A. T. Heitsch, C. M. Hessel, V. A. Akhavan, and B. A. Korgel Nano Lett. 9, 3042(2009).

Google Scholar

[7] A. M. Chockla, and B. A. Korgel, J Mater. Chem. 19, 9284(2009).

Google Scholar

[8] Z. Li, L. N. Cheng, Q. Sun, Z. H. Zhu, M. J. Riley,  M. Aljada,  Z. X.  Cheng,  X. L. Wang,   G. R. Hanson,   S. Z. Qiao,  S. C. Smith, and G. Q. Lu, Angew Chem. Int. Ed. 49, 2777(2010).

DOI: 10.1002/anie.200907021

Google Scholar

[9] G. Aksomaityte, F. Cheng, A. L. Hector, J. R. Hyde,  W. Levason, G. Reid,  D. C. Smith, J. W. Wilson,  and W. J. Zhang, Chem. Mater. 22, 4246(2010).

DOI: 10.1021/cm1008812

Google Scholar

[10] G. X. Zhu, Z. Xu, J Am. Chem. Soc. 133, 148(2011).

Google Scholar

[11] W. Han, L. X. Yi, N. Zhao, A. W. Tang, M. Y. Gao, and Z. Y. Tang, J Am. Chem. Soc. 130, 13152(2008).

Google Scholar

[12] W. P. Lim, Z. Zhang, H. Y. Low, and W. S. Chin, Angew Chem. Int. Ed. 43, 5685(2004).

Google Scholar

[13] A. K. Ivanov-Shitz, Crystallogr Rep. 52, 302(2007).

Google Scholar

[14] S. C. Yan, L. T. Sun, P. Qu, N. P. Huang, Y. C. Song, and Z. D. Xiao, 182, 2941(2009).

Google Scholar

[15] S. C. Yan, D. Hu, J. S. Wu, X. Xu, J. Wang, and Z. D. Xiao, J Alloys Comp. 509, L239(2011).

Google Scholar

[16] S. C. Yan, D. Hu, F. H. Hu, J. S. Wu, N. P. Huang, and Z. D. Xiao, Crystengcomm 13, 4580(2011).

Google Scholar

[17] S. C. Yan, K. Shen, X. Xu, Y. Shi, J.S. Wu, and Z. D. Xiao, Synth Met. 2011, 161, 1646(2011).

Google Scholar

[18] Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. M. Wei, Inorg. Chem. 46, 6980(2007).

Google Scholar

[19] X. X. Xu, J. Zhuang, and X. Wang, J Am. Chem. Soc. 130, 12527(2008).

Google Scholar

[20] S. C. Yan, D. Hu, J. S. Wu, J. Q. Qian, Y. Y. Wang, and Z. D. Xiao, Solid State Sci. 12, 1507(2010).

Google Scholar

[21] S. C. Yan, L. T. Sun, Y. Sheng, N. P. Huang, and Z. D. Xiao, New J. Chem. 35, 299(2011).

Google Scholar

[22] Z. Y. Huo, C. K. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, Nano Lett. 8, 2041(2008).

Google Scholar

[23] D. S. Li, D. J. Wang, L. Guo, F. Fu, Z. P. Zhang, and Q. T. Wei, J Phys. Chem. C 113, 5984(2009).

Google Scholar

[24] X. M. Song, J. M. Wu, L. Meng, and M. Yan J Am. Ceramic Soc. 93, 2068(2010).

Google Scholar

[25] R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L .W. Wang,  and A. P. Alivisatos, Science 317, 355(2007).

Google Scholar

[26] D. O. Demchenko, R. D. Robinson, B. Sadtler, C. K. Erdonmez, A. P. Alivisatos, and L. W. Wang, ACS Nano 2, 627(2008).

Google Scholar

[27] B. Sadtler, D. O. Demchenko, H. Zheng, S. M.  Hughes,  M. G. Merkle, U. Dahmen,  L. W. Wang,  and A. P. Alivisatos, J Am. Chem. Soc. 131, 5285(2009).

DOI: 10.1021/ja809854q

Google Scholar

[28] L. Manna, L. W. Wang, R. Cingolani, and A. P. Alivisatos, J Phys. Chem. B 109, 6183(2005).

Google Scholar