[1]
Bannantine J A, Socie D F. A variable amplitude multiaxial fatigue life prediction method. In: Kussmaul K, McDiarmidD, Socie D, eds. Fatigue Under Biaxial and Multiaxial Loading ESISl0. London: Mechanical Engineering Publications, 1991. 35~5l.
DOI: 10.1520/stp36240s
Google Scholar
[2]
Wang C H, Brown M W. A path-independent parameter for fatigue under proportional and non-proportional loading. Fatigue Fract Engng Mater Struct. 1993, 16: 1285~1298.
DOI: 10.1111/j.1460-2695.1993.tb00739.x
Google Scholar
[3]
Wang C H, Brown M W. Life prediction techniques for variable amplitude multiaxial fatigue—Parth 1: Theories. ASMETrans JEngngMat Tech, 1996, 18: 367~370.
DOI: 10.1115/1.2806821
Google Scholar
[4]
Wang C H, Brown M W. Life prediction techniques for variable amplitude multiaxial fatigue—Part 2: Comparison with experimental results. ASME Trans J Engng Mat Tech, 1996, 18: 371~374.
DOI: 10.1115/1.2806822
Google Scholar
[5]
Kim K S, Park J C, Lee J W. Multiaxial fatigue under variable amplitude loads. ASME Trans J Engng Mat Tech, 1999, 121: 286~293.
DOI: 10.1115/1.2812377
Google Scholar
[6]
Yun Zhao, Qiu-hong Meng, Guo-an Wang. Fracture Analysis of Wheel-side Axle of Skid Loader[J]. Failure Analysis and Prevention, 2011, 6(3): 174-177.
Google Scholar
[7]
Xue-ren Wu. Handbook of Mechanical Properties of Aircraft Structural Metals. Beijing: Aviation Industry Press, 1997. 2.
Google Scholar
[8]
Manson S S. Fatigue behavior in strain cycling in the low and inter. Cycle Range. Fatigue-An Interdisciplinary Approach, Syracuse University Press (1969).
Google Scholar
[9]
De-jun Wang. Fatigue Strength Design Theory and Method. Northeast Institute of Technology Press, (1991).
Google Scholar
[10]
Ze-lin Pu, An Experimental Study on Fatigue Behavior of 40CrNiMoA Steel: [Master thesis]. Beijing: Thermal Engineering, North China Electric Power University, (2001).
Google Scholar