Effect of Carbon Content in Direct Reduction Process of Limonite Iron Oxide to Produce Pig Iron Substitute for Thin Wall Ductile Iron Process

Article Preview

Abstract:

Quality molten metal needed to produce thin wall ductile iron (TWDI). Pig iron, as the major base material to produce quality molten metal, due to its high price, has been change with scraps. The use of scrap as major base material associates with more cleaning and chemical composition adjustment. The ITmk3 technology in iron making has successfully produced iron nugget. Iron nugget can be use to substitute pig iron due to its quality that is comparable to pig iron but lower in price. This research conducted to see the effects of carbon content in producing iron nugget. Limonite iron ores used in this research are part of laterite rocks taken from Sebuku Island in South Kalimantan, Indonesia. Variation made to weight of carbon mixed with laterite. Heating temperatures of direct reduction process are 700°C, 900°C, and 1000°C. The process times are 10, 20, and 30 minutes. XRF used in analysing Fe content in laterite and XRD is used in analysing result of direct reduction process. The result shows that increasing carbon content to certain condition will increase the rate of gasification process during direct reduction. The increase of gasification rate will result to higher Fe formation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

281-286

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. D. Rutherford and J. T. Kopfle: Arab Steel September-October (2010), p.29.

Google Scholar

[2] M. Elias in Giant Ore Deposits Workshop , Centre for Ore Deposit research, University of Tasmania (2002).

Google Scholar

[3] N. Narçin, S. Aydin, K. Şeşen, F. Dikeç: International Journal of Mineral Processing Vol. 43 (1995), p.49.

Google Scholar

[4] K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, S. B. Lalvani: Fuel Processing Technology Vol. 86 (2004), p.33.

DOI: 10.1016/j.fuproc.2003.12.009

Google Scholar

[5] T. Usui, N. Inoue, T. Watanabe, T. Yokoyama, T. Oyama, M. Morita: Ironmaking and Steelmaking Vol. 31 (2004), p.479.

DOI: 10.1179/030192304225019289

Google Scholar

[6] N. Ishikawa, K. Furuya, N. Mitsuoka, T. Inami: ISIJ International Vol. 46 (2006), p.1106.

Google Scholar

[7] R. Haque, H.S. Ray : Metallurgical and Materials Transactions B Vol. 26B (1995), p.400.

Google Scholar

[8] S.K. Dey, B. Jana, A. Basumallick: ISIJ International Vol. 33 (1993), p.735.

Google Scholar

[9] Q. Wang, Z. Yang, J. Tian, W. Li, J Sun: Ironmaking and Steelmaking; Vol. 24 (1997), p.457.

Google Scholar

[10] T. Yamashita, T. Nakada, K. Nagata: Metallurgical and Materials Transactions B Vol. 38B (2007), p.185.

Google Scholar

[11] A. E. A. Nogueira, M. B. Mourao, C. Takano, D. M. Santos: Materials Research Vol. 13 No. 2 (2010), p.191.

Google Scholar

[12] B. Anameric, K.B. Rundman, S.K. Kawatra: Minerals and Metallurgical Processing Vol. 23 No. 3 (2006), p.139.

Google Scholar

[13] J. Moon, V. Sahajwalla; Metallurgical and Materials Transactions B Vol. 37B (2006), p.215.

Google Scholar

[14] E. Donskoi, D.L.S. McElwain, L.J. Wibbrley: Metallurgical and Materials Transactions B Vol. 34B (2003), p.255.

Google Scholar

[15] J. W. Soedarsono, A. Kawighara, R. D. Sulamet-Ariobimo, et al; AMR Vol. 652-654 (2013), p.2529.

Google Scholar

[16] J. W. Soedarsono, A. Kawigraha, R. D. Sulamet-Ariobimo, M. A. Asy'ari, A. Yosi and E. M. Putra: AMR Vol. 789 (2013), p.517.

DOI: 10.4028/www.scientific.net/amr.789.517

Google Scholar

[17] I. Kobayashi, Y. Tanigaki and A. Uragami: Iron and Steelmaker Vol. 28 No. 9 (2001), p.19.

Google Scholar

[18] R. Longbottom, L. Kolbeinsen; Iron ore reduction with CO and H2 gas mixtures – Thermodynamic and kinetic modelling; in Proc. of The 4th Ulcos Seminar; October, (2008).

Google Scholar

[19] T. Lindstad, M. Syvertsen, R.J. Ishak, H.B. Arntzen, P.O. Grøntvedt; The influence of alkalis on the Boudouard reaction; Proc. in 10th International Ferroalloys Congress; February, (2004).

Google Scholar