The Effects of K/Na Ratio on the Electrical Properties of (Li, Sb, Ta) Modified KNN Piezoelectric Ceramics at Reduced Temperature with KNbO3 as Sintering Aid

Article Preview

Abstract:

0.95(Na0.95-xKxLi0.05)(Nb0.90Sb0.05Ta0.05)O3-0.05KNbO3 lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, the effects of K/Na ratio on the structure and electrical properties of the ceramics were studied in detail. The results show that the addition of the pre-calcined KNbO3 powder as sintering aid is very effective to improve the density and sinterability, and the ceramics could be well sintered at reduced temperature of 1060 °C as compared with the relatively higher sintering temperature of Li, Sb, Ta modified KNN ceramics reported in the literature at 1100-1220 °C. The ceramics with x=0.44 possess the optimal properties: d33=231 pC/N, kp= 47 %, Pr= 22 μC/cm2, and Ec= 11.4 kV/cm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

299-304

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Cross: Nature. Vol. 432(2004), p.24.

Google Scholar

[2] J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, and D. Damjanovic: J Am Ceram Soc. Vol. 92.

Google Scholar

[6] 2009), p.1153.

Google Scholar

[3] L. Egerton and D.M. Dillon: J Am Ceram Soc. Vol. 42.

Google Scholar

[9] 1959), p.438.

Google Scholar

[4] T.R. Shrout and S.J. Zhang: J Electroceram. Vol. 19(2007), p.111.

Google Scholar

[5] R. E. Jaeger, and L. Egerton: J. Am. Ceram. Soc. Vol. 45.

Google Scholar

[5] 1962), p.209.

Google Scholar

[6] B.P. Zhang, J.F. Li, K. Wang, and H.L. Zhang: J. Am. Ceram. Soc. Vol. 89.

Google Scholar

[5] 2006), p.1605.

Google Scholar

[7] C.W. Ahn, H.C. Song, S. Nahm, S. Priya, S.H. Park, K. Uchino, H.G. Lee, and H.J. Lee: J Am Ceram Soc. Vol. 89.

Google Scholar

[3] 2006), p.921.

Google Scholar

[8] M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, and S. Hirano: J Am Ceram Soc. Vol. 88.

Google Scholar

[5] 2005), p.1190.

Google Scholar

[9] Y.J. Zhao, Y.Z. Zhao, R.X. Huang, R.Z. Liu, and H.P. Zhou: J Am Ceram Soc. Vol. 94.

Google Scholar

[3] 2011), p.656.

Google Scholar

[10] F. Rubio-Marcos, J.J. Romero, M.G. Navarro-Rojero, and J.F. Fernandez: J Eur Ceram Soc. Vol. 29(2009), p.3045.

Google Scholar

[11] M. Fukada, T. Saito, H. Kume, and T. Wada: IEEE Trans Ultrason Ferroelect Freq Contr. Vol. 55.

Google Scholar

[5] 2008), p.988.

Google Scholar

[12] Y.F. Chang, Z.P. Yang, Y.T. Hou, Z.H. Liu, and Z.L. Wang: Appl Phys Lett. Vol. 90(2007), p.232905.

Google Scholar

[13] B.Q. Ming, J.F. Wang, P. Qi, and G.Z. Zang: J Appl Phys. Vol. 101(2007), p.054103.

Google Scholar

[14] J. Fu, R.Z. Zuo, Y.P. Wu, Z.K. Xu, and L.T. Li: J. Am. Ceram. Soc. Vol. 91.

Google Scholar

[11] 2008), p.3771.

Google Scholar

[15] H.Q. Wang, X.W. Zhang, Y.J. Dai: Mater Lett. Vol. 67(2012), p.145.

Google Scholar

[16] Y.J. Zhao, Y.Z. Zhao, R.X. Huang, R.Z. Liu, and H.P. Zhou: Mater Lett. Vol. 75(2012), p.146.

Google Scholar

[17] D.M. Lin, K.W. Kwok, and H.L.W. Chan: Appl Phys Lett. Vol. 90(2007), p.232903.

Google Scholar