Investigation on Electrical Properties of CaCu3Ti4O12-Modified (Na,Bi)TiO3-BaTiO3 Lead Free Piezoceramics

Article Preview

Abstract:

(Na,Bi)TiO3-BaTiO3 lead free piezoelectric ceramics were fabricated with modification of CaCu3Ti4O12 additives. The phase structure, morphology, dielectric and piezoelectric properties of prepared samples were investigated, respectively. It was found that CaCu3Ti4O12 additives evidently improve the polarization properties of (Na,Bi)TiO3-BaTiO3 lead free ceramics and the obtained samples exhibit an excellent piezoelectric properties (electromechanical coupling factor Kp=31%, mechanical quality factor Qm=151 and piezoelectric constant d33=160pC/N). According to results, the effect of CaCu3Ti4O12 additives on electrical properties of (Na,Bi)TiO3-BaTiO3 lead free piezoelectric ceramics is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

289-293

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kishi, Y. Mizuno, H. Chazono, Jpn. J. Appl. Phys. 42(2003)1-15.

Google Scholar

[2] N. Setter, J. Eur. Ceram. Soc. 21(2001)1279-1293.

Google Scholar

[3] S.X. Zhao, Q. Li, Y.C. Feng, C.W. Nan, J. Phys. Chem. Solids 70(2009)639-644.

Google Scholar

[4] J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92.

Google Scholar

[6] 2009)1153-1177.

Google Scholar

[5] Y.L. Wang, D. Damjanovic, N. Klein, N. Setter, J. Am. Ceram. Soc. 91.

Google Scholar

[6] 2008)1962-(1970).

Google Scholar

[6] T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25(2005)2693-2700.

Google Scholar

[7] G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Kainik, Sov. Phys. Solid State 2(1961)2651-2654.

Google Scholar

[8] V.A. Isupov, Ferroelectrics 315(2005)123-147.

Google Scholar

[9] V. Dorcet, G. Trolliard, P. Boullay, Chem. Mater. 20(2008)5061-5073.

Google Scholar

[10] T. Takenaka, K.I. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30[9B](1991)2236-2239.

Google Scholar

[11] C.W. Ahn, C.S. Park, C.H. Choi, S. Nahm, M.J. Yoo, H.G. Lee, S. Priya S, J. Am. Ceram. Soc. 92.

Google Scholar

[9] 2009)2033-(2038).

Google Scholar

[12] Y. Hosono, K. Harada, Y. Yamashita, Jpn. J. Appl. Phys. Part1 40[9B](2001)5722-5726.

Google Scholar

[13] Y. Watanabe, Y. Hiruma, H. Nagata, T. Takenaka, Ceram. Int. 34(2008)761-764.

Google Scholar

[14] P. Jarupoom, K. Pengpat, N. Pisitpipathsin, S. Eitssayeam, U. Intatha, G. Rujijanagul, T. Tunkasiri, Curr. Appl. Phys. 8(2008)253-257.

DOI: 10.1016/j.cap.2007.10.010

Google Scholar

[15] C.C. Homes, T. Vogt, S.M. Shapiro, Phys. Rev. B: Condens. Matter 67(2003)092106.

Google Scholar

[16] F. Amaral, C.P.L. Rubinger, M.A. Valente, L.C. Costa, R.L. Moreira, J. Appl. Phys. 105(2009)034109.

Google Scholar

[17] D.F.K. Hennings, J. Eur. Ceram. Soc. 21(2001)1637-1642.

Google Scholar

[18] M. Savinov, V.A. Trepakov, P.P. Syrnikov, V. Železný, J. Pokorný, A. Dejneka, L. Jastrabík, P. Galinetto, J. Phys.: Condens. Matter 20(2008)095221.

DOI: 10.1088/0953-8984/20/9/095221

Google Scholar

[19] B.A. Bender, M.J. Pan, Mater. Sci. Eng., B 117(2005)339-347.

Google Scholar

[20] P. Pookmanee, S. Phanichphant, U. Straube, R.B. Heimann, cfi/Ber DKG 80.

Google Scholar

[10] 2003)D1.

Google Scholar