[1]
Cheung P C, Salt I P, Davies S P. Characterization of AMP-activated protein kinase gamma-subunit isoforms and theirrole in AMP binding[J]. Biochem J, 2000, 346(3): 659.
DOI: 10.1042/bj3460659
Google Scholar
[2]
Hardie D G. The AMP-activated protein kinase pathway-newplayers upstream and downstream[J]. J Cell Sci, 2004, 117: 5479-5487.
DOI: 10.1242/jcs.01540
Google Scholar
[3]
Carling D. AMP-activated protein kinase: balancing the scales[J]. Biochimie, 2005, 87: 87-91.
DOI: 10.1016/j.biochi.2004.10.017
Google Scholar
[4]
Schimmack G, DefronzoR A, Musi N. AMP-activated protein ki-nase: role inmetabolism and therapeutic implications[J]. Diabetes Obes Metab, 2006, 8(6): 591-602.
DOI: 10.1111/j.1463-1326.2005.00561.x
Google Scholar
[5]
Hawley S A, Pan D A, Mustard K J, et al., Calmodulin-dependentprotein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase [J]. Cell Metab, 2005, 2(1): 9-19.
DOI: 10.1016/j.cmet.2005.05.009
Google Scholar
[6]
Shaw R J, Kosmatka M, Bardeesy N, et a1., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress[J]. Proc Natl Acad Sci USA, 2004, 101(10): 3329-3335.
DOI: 10.1073/pnas.0308061100
Google Scholar
[7]
Xie M, Zhang D, Dyck J R, et al., A pivotal role for endogenous TGF-β-activated kinase-1 in the LKB1/AMP-activated protein kinase energy sensor pathway[J]. PNAS, 2006, 103(46): 17378-17383.
DOI: 10.1073/pnas.0604708103
Google Scholar
[8]
Foretz M, Ancellin N, Andreelli F, et al., Short term over expression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver[J]. Diabetes, 2005, 54(5): 1331-1339.
DOI: 10.2337/diabetes.54.5.1331
Google Scholar
[9]
Kim Y D, Park K G, Lee Y S, et al., Metformin inhibits hepatic glucone ogenesis through AMP-activated protein kinase dependent regulation of the orphan nuclear receptor SHP. Diabetes, 2008, 57: 306-314.
DOI: 10.2337/db07-0381
Google Scholar
[10]
Shaw R J, Lamia K A, Vasquez D, et al., The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 2005, 310: 1642-1646.
DOI: 10.1126/science.1120781
Google Scholar
[11]
Wang M R, Li R. Recent progress in the relationship of AMPK and type 2 diabetes[J]. J Endocrine Surg, 2007, 1(2): 132-134.
Google Scholar
[12]
Mcgee S L, Hargreaves M. Exercise and skeletal muscle glucose transporter 4 expression: Molecular mechanisms[J]. Clin Exp Pharmacol Physiol, 2006, 33(4): 395-399.
DOI: 10.1111/j.1440-1681.2006.04362.x
Google Scholar
[13]
Wright D C, Geiger P C, Ho Hoszy J O, et a1. Contraction and hypoxia stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow twitch rat soleusmuscle[J]. Am J Physiol Endocrinol Metab, 2005, 288(6): 1062-1066.
DOI: 10.1152/ajpendo.00561.2004
Google Scholar
[14]
Kamysheva E P. In sulin resistance in internal diseases [J] . Klin Med (Mosk), 2007, 85(6): 21-27.
Google Scholar
[15]
Kim W H, Lee J W, Suh Y H, et al AICAR potentiates ROS production induced by chronic high glucose: roles of AMPK in pancreatic beta cell apoptosis. Cell Signal 2007, 19: 791-805.
DOI: 10.1016/j.cellsig.2006.10.004
Google Scholar
[16]
Kim Y D, Park K G, Lee Y S, et al Met for in Inhibits hepatic glucone ogenesis through AMP activated protein kinase dependent regulation of the orphan nuclear receptor SHP. Diabetes, 2008, 57: 306-314.
DOI: 10.2337/db07-0381
Google Scholar