Isolation and Characterization of Abietic Acid

Article Preview

Abstract:

Abietic acid was isolated by means of isomerization and amination reaction-crystallization coupled with ultrasonic wave. Isomerization rosin and ethanolamine were used as raw materials, 95% ethanol as recrystallization solvent, the effects of reaction temperature, reaction time, agitating velocity, ultrasound intensity and recrystallization times on the purity and yield of abietic acid were investigated. The suitable isolation conditions were obtained as follow: reaction temperature 30 °C, reaction time 40 min, agitating velocity 400 rpm, ultrasound intensity 300 W and freeze crystallization of amine salt three times. The purity and yield of abietic acid were 98.52% and 54.93% when the suitable conditions were used. And it was then characterization by its melting point, specific rotation, UV, FTIR and NMR, all evidence indicated that the purification product was abietic acid.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

551-556

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. C. Cambie, R. A. Franich, D. Larsen, et al., Potential ambergris odorants from abietic acid, Australian Journal of Chemistry. 43(1990)21-46.

DOI: 10.1071/ch9900021

Google Scholar

[2] M. C. Costa, S. P. Alves, M. E. Correia, et al., Synthesis of an ambergris-type ketal from abietic acid, Synthesis. 2006(2006)1171-1175.

DOI: 10.1055/s-2006-926392

Google Scholar

[3] J. S. Yadav, G. Baishya, U. Dash, Synthesis of (+) -amberketal and its analog from l-abietic acid, Tetrahedron. 63(2007) 9896-9902.

DOI: 10.1016/j.tet.2007.06.063

Google Scholar

[4] A. Presser, I. Pötschger, E. Haslinger, et al., Synthetic transformations of abietic acid Vа: Structure modification and ozonization, Monatshefte fur Chemie. 133(2002)231-239.

DOI: 10.1007/s007060200000

Google Scholar

[5] B. Gigante, C. Santos, A. M. Silva, et al., Catechols from abietic acid: synthesis and evaluation as bioactive compounds, Bioorganic & Medicinal Chemistry. 11(2003) 1631-1638.

DOI: 10.1016/s0968-0896(03)00063-4

Google Scholar

[6] M. A. González, J. Correa-Royero, L. Agudelo, et al., Synthesis and biological evaluation of abietic acid derivatives, European Journal of Medicinal Chemistry. 44(2009)2468-2472.

DOI: 10.1016/j.ejmech.2009.01.014

Google Scholar

[7] C. H. Lin, H. S. Chuang, Use of abietic acid and derivatives thereof for inhibiting cancer, U. S. Patent 7, 015, 248B2. (2006).

Google Scholar

[8] M. A. Fernández, M. P. Tornos, M. D. García, et al., Anti-inflammatory activity of abietic acid, a diterpene isolated from pimenta racemosa var. grissea, Journal of Pharmacy and Pharmacology. 53(2001)867-872.

DOI: 10.1211/0022357011776027

Google Scholar

[9] T. Nobuyuki, K. Teruo, G. Tsuyoshi, et al., Abietic acid activates peroxisome proliferator-activated receptor-γ( PPARγ) in RAW264. 7 macrophages and 3T3-L1 adipocytes to regulate gene expression involved in inflammation and lipid metabolism, Federation of European Biochemical Societies Letters. 550(2003).

DOI: 10.1016/s0014-5793(03)00859-7

Google Scholar

[10] E. Alvarez-Manzaneda, R. Chahboun, F. Bentaleb, et al., Regioselective routes towards 14-hydroxyabietane diterpenes. A formal synthesis of immunosuppressant (-)-triptolide from (+)-abietic acid, Tetrahedron. 63(2007)11204-11212.

DOI: 10.1016/j.tet.2007.07.088

Google Scholar

[11] M. Hiroshi, O. Katsuya, E. Hiroshi, et al., Abietamide derivatives, their production and use, U. S. Patent 4, 210, 671(A). (1980).

Google Scholar

[12] L. Y. Zheng, S. W. Zhang, L. Zheng, et al., Sulphonated dehydrogenated sylvate, the preparation and use, U. S. Patent 20, 040, 162, 341(A1). (2004).

Google Scholar

[13] N. N. Ulusu, D. Ercil, M. Sakar, et al., Abietic acid inhibits lipoxygenase activity, Phytotherapy Research. 16(2002) 88-90.

DOI: 10.1002/ptr.983

Google Scholar

[14] Y. Aya, E. Yoichiro, M. Kohtaro, et al., Supercritical fluid chromatography of free resin acids on an ODS-silica gel column, Journal of Chromatography A. 709(1995)345-349.

DOI: 10.1016/0021-9673(95)00442-p

Google Scholar

[15] S. Sadhra, C. N. Gray, I. S. Foulds, High-performance liquid chromatography of unmodifed rosin and its applications in contact dermatology, Journal Of Chromatography B. 700(1997)101-110.

DOI: 10.1016/s0378-4347(97)00293-4

Google Scholar

[16] A. Findeisen, V. Kolivoska, I. Kaml, et al., Analysis of diterpenoic compounds in natural resins applied as binders in museum objects by capillary electrophoresis, Journal of Chromatography A. 1157(2007)454-461.

DOI: 10.1016/j.chroma.2007.05.010

Google Scholar

[17] J. K. He, Q. J. Li, Comprehensive Treatise on Torest Chemical Industry, Beijing, China Forestry Press, (2001).

Google Scholar

[18] G. C. Harris, T. F. Sanderson, Resin acids. I. An improved method of isolation of resin acids; the isolation of a new abietic-type acid, neoabietic acid, Journal American Chemical Society. 70(1948)334-339.

DOI: 10.1021/ja01181a104

Google Scholar

[19] Y. He, Y. M. Zhang, J. Lu, et al., Isolation and structural elucidation of abietic acid as the main adulterant in an herbal drug for the treatment of psoriasis, Journal of Pharmaceutical and Biomedical Analysis. 66(2012)345-348.

DOI: 10.1016/j.jpba.2012.03.007

Google Scholar