Glutaraldehyde Cross-Linked Silk Fibroin Films for Controlled Release

Article Preview

Abstract:

Glutaraldehyde (GA) cross-linked silk fibroin (SF) films were prepared and the structural change were investigated by Fourier transform infrared spectroscopy and differential scanning calorimetry. The results were utilized to reveal the influence of GA cross-linking on the release properties of SF materials. It was found that GA induced conformational transition of SF from random coil to beta-sheet and had influence on the interaction between the peptide chains of SF, resulting in great changes in mechanical and dissolution properties, as well as drug release feature of the films. With increasing GA content, tensile strength of films first increases and then decreases, reaching a maximum around 7.5 %. The cross-linking was found to increase the flexibility and stability of SF films in water, and reduce the burst release of Rhodamine B, a model compound for small drug. The release of Rhodamine B exhibited a continuous and steady release after the initial burst, of which the release rate had a good linear fit to beta-sheet content in the matrix, suggesting that the silk II crystal could be used as a natural regulator for drug release from SF material.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

541-546

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. R. Wittmer, T. Claudepierre, M. Rebe, P. Wiedemann, J.A. Garlick, D.L. Kaplan and C. Egles.: Adv. Funct. Mater. Vol. 21 (2011), p.4232.

DOI: 10.1002/adfm.201100755

Google Scholar

[2] L. Uebersax, H. P. Merkle and L. Meinel: J. Control. Release Vol. 127 (2008), p.12.

Google Scholar

[3] S. Sahoo, S. L. Toh and J. C. H. Goh: Biomaterials Vol. 31 (2010), p.2990.

Google Scholar

[4] E. Wenk, H. P. Merkle and L. Meinel: J. Control. Release Vol. 150 (2011), p.128.

Google Scholar

[5] M. A. Serban, B. Panilaitis and D. L. Kaplan: J. Biomed. Mater. Res. Part A Vol. 98A (2011), p.567.

Google Scholar

[6] R. Li, Y. Zhang, L. Zhu and J. Yao: J. Appl. Polym. Sci. Vol. 124 (2012), p. (2080).

Google Scholar

[7] M. R. Tabandeh and M. Aminlari: J Biotechnol. Vol. 141 (2009), p.189.

Google Scholar

[8] Y. Ye, J. Zhang and L. Huang: Sericulture Sci. Vol. 32 (2006), p.231.

Google Scholar

[9] E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan and V. V. Tsukruk: ACS Nano. Vol. 4 (2010), p.7053.

DOI: 10.1021/nn102456w

Google Scholar

[10] Q. Wei, A. Huang, L. Ma, Z. Huang, X. Huang, P. Qiang, Z. Gong and L. Zhang.: J. Appl. Polym. Sci. Vol. 25 (2012), p. E477.

Google Scholar

[11] M. X. Xie and Y. Liu: Chem. J. Chin. Univ. Vol. 24 (2003), p.226. (in chinese).

Google Scholar

[12] Y. K. Hae and Y. H. Park: Biomaterials. Vol., 73 (1999), p.2887.

Google Scholar

[13] H. Y. Kweon, I. C. Um and Y. H. Park: Polymer Vol. 41 (2000), p.7361.

Google Scholar

[14] Y. Gotoh, M. Tsukada, T. Baba and N. Minoura: Polymer Vol. 38 (1997), p.487.

Google Scholar

[15] F. Cilurzo, C. G. M. Gennari, F. Selmin, L. A. Marotta, P. Minghetti and L. Montanari: Int. J. Pharm. Vol. 414 (2011), p.218.

Google Scholar

[16] H. Heslot: Biochemie. Vol. 80 (1998), p.19.

Google Scholar

[17] Y. Nakazawa and T. Asakura: J. Am. Chem. Soc. Vol. 125 (2003), p.230.

Google Scholar

[18] C. Tanaka, R. Takahashi, A. Asano, T. Kurotsu, H. Akai, K. Sato, D. P. Knight and T. Asakura: Macromolecules. Vol. 41 (2008), p.796.

DOI: 10.1021/ma7021875

Google Scholar

[19] A. R. Murphy and D. L. Kaplan: J. Mater. Chem. Vol. 19 (2009), p.6443.

Google Scholar

[20] H. Yoshimizu and T. Asakura: J. Appl. Polym. Sci. Vol. 40 (1990), p.1745.

Google Scholar