High Pressure Torsion of Pure Ti: Effect of Pressure and Strain on Allotropy

Article Preview

Abstract:

High-pressure torsion (HPT) was conducted on commercial grade pure titanium (99.4%) by applying pressures in a wide range from 1.2 to 40 GPa. When the microhardness was plotted against equivalent strain, the hardness saturates to a constant level at each applied pressure. Such a level at the saturation depends on the applied pressure: for up to the pressure of 4 GPa, the saturation level is independent of the pressure but, for the pressures above 4 GPa, the hardness gradually increases with pressure because of the formation of an  phase. Bending tests showed that an excellent ductility as well as high bending strength was achieved for the sample processed at 2 GPa. The bending ductility was reduced for the sample at 6 GPa because of the  phase formation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 89-91)

Pages:

171-176

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.S. Zhernakov, V.V. Latysh, V.V. Stolyarov, A.I. Zharikov and R.Z. Valiev: Scripta Mater. Vol. 44 (2001), p.1771.

DOI: 10.1016/s1359-6462(01)00737-0

Google Scholar

[2] R. Z. Valiev, I. P. Semenova, E. Jakushina, V.V. Latysh, H. Rack, T.C. Lowe, J. Petruzelka, L. Dluhos, D. Hrusak and J. Sochova: Mater. Sci. Forum Vol. 584-586 (2008), p.49.

DOI: 10.1002/adem.200800026

Google Scholar

[3] A.V. Sergueeva, V.V. Stolyarov, R.V. Valiev and A.K. Mukhrjee: Scripta Mater. Vol. 45 (2001), p.747.

Google Scholar

[4] A. V. Sergueeva, C. Song, R. Z. Valiev and A. K. Mukherejee: Mater. Sci. Eng. A Vol. 339 (2003), p.159.

Google Scholar

[5] C. Rentenberger, T. Waitz, H.P. Karnthaler, Mater. Sci. Eng. A Vol. 462 (2007), p.283.

Google Scholar

[6] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000) p.103.

Google Scholar

[7] A.R. Kilmametov, A.V. Khristoforova, G. Wilde, R.Z. Valiev, Z. Kristallogr. Suppl. Vol. 26 (2007), p.339.

Google Scholar

[8] Todaka, J. Sasaki, T. Moto, M. Umemoto, Scripta Mater. Vol. 59 (2008), p.615.

Google Scholar

[9] K. Edalati, E. Matsubara and Z. Horita: submitted to Metall. Mater. Trans. A (2008).

Google Scholar

[10] K. Edalati, T. Fujioka and Z. Horita: Mater. Trans. Vol. 50 (2009), p.44.

Google Scholar

[11] K. Edalati, T. Fujioka and Z. Horita, Mater. Sci. Eng. A Vol. 497 (2008), p.168.

Google Scholar

[12] D. Errandonea, Y. Meng, M. Somayazulu and D. Haussermann: Physica B Vol. 355 (2005), p.116.

Google Scholar

[13] V.A. Zilbershtein, N.P. Chistotina, A.A. Zharov, N.S. Grishina, E.I. Estrin, Fiz. Metal. Metalloved. Vol. 39 (1975), p.445.

Google Scholar

[14] S.K. Sikka, Y.K. Vohra and R. Chidambaram: Prog. Mater. Sci. Vol. 27 (1982), p.245.

Google Scholar