Evolution of Residual Stress in Cu-Line Patterns with Different Linewidth

Article Preview

Abstract:

The Cu-line patterns with different linewidth were deposited by radio-frequency sputtering and defined by photolithography lift-off process. The residual stress was evaluated with X-ray diffraction technique and the results show that the Cu-line patterns are in a biaxial stress state and the stress values have a great dependence on linewidth. Further analysis reveals that the intrinsic stress has a main effect on changes of residual stress; however, the thermal stress plays a key role on anisotropic contribution of residual stress in directions along and across the Cu line. The variation of intrinsic stress correlates well with crystal orientation of the Cu line, and the linewidth seems to be the most crucial parameter for evolution of both texture and stress.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 89-91)

Pages:

609-614

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Borngesen, J.K. Lee, R. Glexner and C. -Y. Li: Appl. Phys. Lett. Vol. 60 (1992), p.1706.

Google Scholar

[2] L.T. Shi and K.N. Tu: J. Appl. Phys. Lett. Vol. 65 (1994), p.1516.

Google Scholar

[3] H. Okabayashi: Mater. Sci. Eng. R Rep. Vol. 11 (1993), p.191.

Google Scholar

[4] P.J. McNally and J. Kanatharana: J. Appl. Phys. Vol. 96 (2004), p.7596.

Google Scholar

[5] J.M. Paik, I.M. Park and Y.C. Joo: J. Appl. Phys. Vol. 99 (2006), p.024509.

Google Scholar

[6] T. Hosoda, H. Niwa, H. Yagi and H. Tsuchikawa: Proc. Int. Rel. Phys. Symp. Vol. 29 (1991), p.77.

Google Scholar

[7] M. Henning and H. Vehoff: Mater. Sci. Eng. A Vol. 452-453 (2007), p.602.

Google Scholar

[8] I. -S. Yeo and P.S. Ho: J. Appl. Phys. Vol. 78 (1995), p.945.

Google Scholar

[9] F. Sa'nchez-Bajo, A.L. Ortiz and F.L. Cumbrera: Acta Mater. Vol. 54 (2006), p.1.

Google Scholar

[10] D. Gloaguen, T. Berchi, E. Girard and R. Guillén: Acta Mater. Vol. 55 (2007), p.4369.

Google Scholar

[11] P. Scherrer: Nachr. Ges. Wiss. Gottingen Vol. 2 (1918), p.98.

Google Scholar

[12] A. Wikström, P. Gudmundson and S. Suresh: J. Mech. Phys. Solids Vol. 47 (1999), p.1113.

Google Scholar

[13] P. Gudmundson and W. Zang: Int. J. Solids and Structures Vol. 30 (1993), p.3211.

Google Scholar

[14] J.H. Zhao, W.J. Qi and P.S. Ho: Microelectron. Reliab. Vol. 42 (2002), p.27.

Google Scholar

[15] Y.M. Shen, H.B. He, S.Y. Shao, Z.X. Fan and J.D. Shao: High Power Laser and Particle Beams Vol. 17 (2005), p.1812.

Google Scholar

[16] J.M. Zhang, Y. Zhang and K.W. Xu: J. Crystal Growth Vol. 285 (2005), p.427.

Google Scholar

[17] A.F. Burnett and J.M. Cech: J. Vac. Sci. Technol. A Vol. 11 (1993), p.2970.

Google Scholar

[18] W. Tang, K.W. Xu, P. Wang and X. Li: Mater. Lett. Vol. 57 (2003), p.3101.

Google Scholar