FEM Modelling of Recrystallization Behaviour for Near-Alpha Ti Alloy IMI834

Article Preview

Abstract:

The recrystallization behaviour of near-alpha titanium alloy IMI834, which is primarily used for high temperature aerospace compressor disc applications, has been investigated at hot working temperatures. The latest results of a finite element model, developed using the commercial code DEFORM-3D with constitutive equations adapted from available literature, will be presented. Model development and validation involved the hot compression of specimens with an initial bimodal alpha+beta microstructure at temperatures of 1000°C-1100°C, strain rates of 0.01s 1-1s 1, and varied post-deformation annealing times. The characterization of microstructure through quantitative metallography revealed beta grain refinement achieved primarily through static/metadynamic recrystallization. The beta recrystallization kinetics were subsequently predicted through an Avrami-type relationship.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 89-91)

Pages:

592-597

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Lutjering and J.C. Williams: Titanium (Springer-Verlag, Berlin 2003).

Google Scholar

[2] H.M. Flower: Mater. Sci. Technol. Vol. 6 (1990), pp.1082-1092.

Google Scholar

[3] G.W. Kuhlman, in: Microstructure/Property Relationships in Titanium Aluminides and Alloys, edited by Y. -W. Kim and R.R. Boyer TMS, Warrendale, PA (1991), pp.465-491.

Google Scholar

[4] V. Venkatesh and A.F. Wilson, in: Ti-2007: Science and Technology, edited by M. Niinomi, S. Akiyama, M. Ikeda, M. Hagiwara and K. Maruyama The Japan Institute of Metals, Ichibancho, Aoba-ku, Sendai, Japan (2007), pp.865-868.

Google Scholar

[5] R.R. Boyer and D. Furrer, in: Materials Processing and Design: Modeling, Simulation and Applications, NUMIFORM 2004, edited by S. Ghosh, J.C. Castro and J.K. Lee American Institute of Physics, New York, NY (2004), pp.1694-1699.

Google Scholar

[6] P. Vo, M. Jahazi, S. Yue and P. Bocher: Mater. Sci. Eng. Vol. A447 (2007), pp.99-110.

Google Scholar

[7] P. Vo, M. Jahazi and S. Yue: Metall. Mater. Trans. Vol. 39A (2008), pp.2965-2980.

Google Scholar

[8] W.A. Johnson and R.F. Mehl: Trans. Metall. Soc. A.I.M.E. Vol. 135 (1939), pp.416-458.

Google Scholar

[9] M. Avrami: J. Chem. Phys. Vol. 7 (1939), pp.1103-1112.

Google Scholar

[10] A.N. Kolmogorov: Bull. Acad. Sci. USSR Vol. Phys. Ser. 1 (1937), pp.355-359.

Google Scholar

[11] R.L. Goetz and S.L. Semiatin: Mater. Eng. Performance Vol. 10 (2001), pp.710-717.

Google Scholar

[12] G. Shen, S.L. Semiatin and T. Altan: Mater. Proc. Technol. Vol. 36 (1993), pp.303-319.

Google Scholar

[13] DEFORM 3D Version 5. 1 Material Database, in: DEFORM 3D, Scientific Forming Technologies Corporation, Columbus, OH, (2004).

Google Scholar

[14] S.L. Semiatin, F. Montheillet, G. Shen and J.J. Jonas: Metall. Mater. Trans. Vol. 33A (2002), pp.2719-2727.

Google Scholar

[15] R. Hill: J. Mech. Phys. Solids Vol. 13 (1965), pp.213-222.

Google Scholar

[16] A. Colin, C. Desrayaud, M. Mineur and F. Montheillet: Mater. Sci. Forum Vol. 539-543 (2007), pp.3661-3666.

DOI: 10.4028/www.scientific.net/msf.539-543.3661

Google Scholar

[17] M. Mulyadi, M.A. Rist, L. Edwards, J.W. Brooks and A. Wilson, in: Ti-2007: Science and Technology, edited by M. Niinomi, S. Akiyama, M. Ikeda, M. Hagiwara and K. Maruyama The Japan Institute of Metals, Ichiban-cho, Aoba-ku, Sendai, Japan (2007).

Google Scholar

[18] F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena (Elsevier Science Ltd, Oxford, 1995).

Google Scholar

[19] C.M. Sellars and J.A. Whiteman: Met. Sci. Vol. 13 (1979), pp.187-194.

Google Scholar

[20] C.M. Sellars: Czech. J. Phys. B Vol. 35 (1985), pp.239-248.

Google Scholar