Effects of Combined Zr and Mn Additions on Dispersoid Formation and Recrystallisation Behaviour of AA2198 Sheet

Article Preview

Abstract:

The present paper focuses on the influence of combined additions of Zr and Mn on the recrystallisation resistance of aluminium alloy 2198 sheet. Dual additions of these dispersoid forming elements have previously been reported to be beneficial for reducing recrystallisation during solution treatment, as they exhibit opposing microsegregation partitioning on solidification. Contrary to expectation, it was found that the addition of Mn, to a standard Zr-containing 2198 sheet material, reduced recrystallisation resistance. The reasons for this behaviour are explored by analysis of the morphology, size, chemistry, and distribution of the dispersoid families formed, as a function of the Mn and Zr level, traced back to the homogenisation stage.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 89-91)

Pages:

568-573

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. S. Chung, C. W. Jea, J. H. Yoon, J. K. Kim: Materials Science Forum Vol. 539-543 (2007), p.481.

Google Scholar

[2] S. -W. Lee, J. -W. Yeh: Materials Science and Engineering A Vol. 460-461 (2007), p.409.

Google Scholar

[3] E. Nes, N. Ryum, O. Hunderi: Acta Metallurgica Vol. 33 (1985), p.11.

Google Scholar

[4] J. D. Robson, P. B. Prangnell: Acta Materialia Vol. 49 (2001), p.599.

Google Scholar

[5] Z. Jia, G. Hu, B. Forbord, J. K. Solberg: Materials Science and Engineering A Vol. 444 (2007), p.284.

Google Scholar

[6] J. Chang, I. Moon, C. Choi: Metallurgical and Materials Transactions A Vol. 29 (1998), p.1873.

Google Scholar

[7] J. L. Ning, D. M. Jiang: Materials Science and Engineering A Vol. 452-453 (2007), p.552.

Google Scholar

[8] A. Cho, B. Bès: Materials Science Forum Vol. 519-521 (2006), p.603.

Google Scholar

[9] B. Forbord, H. Hallem, K. Marthinsen: Proceedings of the 9th International Conference on Aluminium Alloys, Brisbane, Australia (2004), p.1179.

Google Scholar

[10] S. Cheong, H. Weiland: Materials Science Forum Vol. 558-559 (2007), p.153.

Google Scholar

[11] R. Kaibyshev, F. Musin, D. R. Lesuer, T. G. Nieh: Materials Science and Engineering A Vol. 342 (2003), p.169.

Google Scholar

[12] T. Ohashi, L. Dai, N. Fukatsu: Metallurgical and Materials Transactions A Vol. 17 (1986), p.799.

Google Scholar

[13] A. Johansen, Ø. Bauger, J. D. Embury, N. Ryum: Aluminium Vol. 82 (2006), p.980.

Google Scholar

[14] A. Cho, Z. Long, B. Lisagor, T. Bales, M. Domack, J. Wagner: Materials Science Forum Vol. 519-521 (2006), p.1585.

DOI: 10.4028/www.scientific.net/msf.519-521.1585

Google Scholar

[15] T. Warner: Materials Science Forum Vol. 519-521 (2006), p.1271.

Google Scholar

[16] J. D. Robson, P. B. Prangnell: Materials Science and Technology Vol. 18 (2002), p.607.

Google Scholar

[17] C. Sigli, L. Maenner, C. Sztur, R. Shahani: Aluminium Alloys: Their physical and mechanical properties (ICAA6), Toyohashi, Japan: JILM (1998), p.87.

Google Scholar

[18] C. Li, S. C. Wang, Y. Jin, M. Hua, M. Yan: Aluminium Alloys '90. Second International Conference on Aluminium Alloys-Their Physical and Mechanical Properties, Beijing, China (1990), p.504.

Google Scholar