[1]
C. Stöcker, M. Zimmermann, H. -J. Christ, Z. -L. Zhan, C. Cornet, L. G. Zhao, M. C. Hardy, and J. Tong, Microstructural characterisation and constitutive behaviour of alloy RR1000 under fatigue and creep–fatigue loading conditions, Materials Science and Engineering: A, vol. 518, no. 1–2, p.27–34, Aug. (2009).
DOI: 10.1016/j.msea.2009.04.055
Google Scholar
[2]
H. Christ, Effect of environment on thermomechanical fatigue life, Materials Science and Engineering: A, vol. 468–470, p.98–108, Nov. (2007).
DOI: 10.1016/j.msea.2006.08.132
Google Scholar
[3]
M. C. Hardy, B. Zirbel, G. Shen, and R. Shankar, Developing damage tolerance and creep resistance in a high strength, p.83–90, (2004).
Google Scholar
[4]
J. J. Moverare and D. Gustafsson, TMF : Thermo-mechanical fatigue crack growth behavior of Inconel 718 1 Introduction, Management, p.1–15, (2011).
Google Scholar
[5]
L. Jacobsson, C. Persson, and S. Melin, Thermo-mechanical fatigue crack propagation experiments in Inconel 718, International Journal of Fatigue, vol. 31, no. 8–9, p.1318–1326, Aug. (2009).
DOI: 10.1016/j.ijfatigue.2009.02.041
Google Scholar
[6]
M. R. Winstone, J. W. Brooks, and P. Down, Advanced high temperature materials : aeroengine fatigue, Ciência e Tecnologia dos Materiais, Vol. 20, p.15–24, (2008).
Google Scholar
[7]
P. Hähner, E. Affeldt, T. Beck, H. Klingelhöffer, M. Loveday, and C. Rinaldi, Validated Code-of-Practice for Thermo-Mechanical Fatigue Testing, Reproduction, no. June, (2006).
Google Scholar
[8]
H. Pang, Fatigue crack initiation and short crack growth in nickel-base turbine disc alloys - the effects of microstructure and operating parameters, International Journal of Fatigue, vol. 25, no. 9–11, p.1089–1099, Sep. (2003).
DOI: 10.1016/s0142-1123(03)00146-4
Google Scholar
[9]
C. J. Hyde, W. Sun, and T. H. Hyde, An investigation of the failure mechanisms in high temperature materials subjected to isothermal and anisothermal fatigue and creep conditions, Engineering, vol. 10, p.1157–1162, (2011).
DOI: 10.1016/j.proeng.2011.04.192
Google Scholar
[10]
R. . Marchand, N; Pelloux, Thermal-Mechanical Fatigue Crack Growth in Inconel X-750, Growth (Lakeland), (1984).
DOI: 10.1007/978-94-009-5085-6_14
Google Scholar
[11]
Z. Huang, Z. Wang, S. Zhu, F. Yuan, and F. Wang, Thermomechanical fatigue behavior and life prediction of a cast nickel-based superalloy, Materials Science and Engineering: A, vol. 432, no. 1–2, p.308–316, Sep. (2006).
DOI: 10.1016/j.msea.2006.06.061
Google Scholar
[12]
K. S. Kim and R. H. Van Stone, Crack growth under thermo-mechanical and temperature gradient loads, Engineering Fracture Mechanics, vol. 58, no. I, (1997).
DOI: 10.1016/s0013-7944(97)00065-9
Google Scholar