[1]
A. Canteli., E. Castillo, A. Argüelles, P. Fernández, M. Canales, Checking the fatigue limit from thermographic techniques by means of a probabilistic model of the epsilon–N field, International Journal of Fatigue, 39 (2012), 109–115.
DOI: 10.1016/j.ijfatigue.2011.02.008
Google Scholar
[2]
A. Risitano, G. Risitano, Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters, Int. Journal of Fatigue, 48 (2013) 214-222.
DOI: 10.1016/j.ijfatigue.2012.10.020
Google Scholar
[3]
C. Calloch, F. Hild, P. Cugy, A. Galtier, Identification of the scatter in high cycle fatigue from temperature measurements, CR Mec, 332 (10) (2004) 795–801.
DOI: 10.1016/j.crme.2004.06.002
Google Scholar
[4]
G. La Rosa, A. Risitano Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, Int. Journal of Fatigue, (2000) XXII, 65-73.
DOI: 10.1016/s0142-1123(99)00088-2
Google Scholar
[5]
M.L. Pastor, X. Balandraud, M. Grédiac, J.L. Robert, Applying infrared thermography to study the heating of 2024-T3 aluminium specimens under fatigue loading, Infrared Physics & Technology 51 (2008) 505-515.
DOI: 10.1016/j.infrared.2008.01.001
Google Scholar
[6]
M.P. Luong, Fatigue limit evaluation of metals using an infrared thermographic technique, Mech. Mater., 28 (1988) 155-163.
DOI: 10.1016/s0167-6636(97)00047-1
Google Scholar
[7]
R. Blotny, J. Kaleta, A method for determining the heat energy of the fatigue process in metals under uniaxial stress. Part I and Part II, Int. Journal of Fatigue, (1986) VIII, 29-38.
DOI: 10.1016/0142-1123(86)90044-7
Google Scholar
[8]
S. Seitl, J. Klusak, P. Fernández, A. Canteli: Thermographic determination methodology: Application on fatigue limit of Al 2024 for R=-1, Key Engineering Materials, (2014) Vols. 577-578, 477-480.
DOI: 10.4028/www.scientific.net/kem.577-578.477
Google Scholar
[9]
S. Seitl, J. Klusak, P. Fernández, A. Canteli: Thermographic determination methods: Application on fatigue limit of Al 2024 for R=0. 1, Transactions of the VŠB – Technical University of Ostrava, Mechanical Series, No. 3, (2013) LIX.
DOI: 10.22223/tr.2013-2/1969
Google Scholar
[10]
A. Wöhler, Über die Festigkeits-Versuche mit Eisen und Stahl [On strength tests of iron and steel], Z. Bauwesen. 20 (1870) 73–106.
Google Scholar
[11]
H. Mayer, R. Schuller, M. Fitzka, Fatigue of 2024-T351 aluminium alloy at different load ratios up to 1010 cycles, International Journal of Fatigue, 57 (2013) 113–119.
DOI: 10.1016/j.ijfatigue.2012.07.013
Google Scholar
[12]
H. Mayer, M. Papakyriacou, R. Pippan, S. Stanzl-Tschegg: Influence of loading frequency on the high cycle fatigue properties of AlZnMgCu1. 5 aluminium alloy, Materials Science and Engineering: A, Volume 314, Issues 1–2, 15 (2001) 48–54.
DOI: 10.1016/s0921-5093(00)01913-4
Google Scholar
[13]
B. Pyttel, D. Schwerdt, C. Berger: Very high cycle fatigue – Is there a fatigue limit? International Journal of Fatigue, 33(1), (2011) 49–58.
DOI: 10.1016/j.ijfatigue.2010.05.009
Google Scholar