Experiments and Interpretations of some Load Interaction Phenomena in Fatigue Crack Growth Related to Compressive Loading

Article Preview

Abstract:

The present paper addresses two issues regarding the influence of compressive loadings for fatigue crack growth. The first issue is the crack tip loading in compression. It will be verified that Kmax and R are not suitable to account for compressive loading conditions at the crack tip. The second issue is the investigation of some basic load interaction effects in tension-compression loading. Especially loading conditions that were reported leading to an acceleration of fatigue crack growth were revisited. Numerical simulations of the experiments are used to interpret the results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

1353-1359

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhang J, He X, Du S. Analysis of the effects of compressive stresses on fatigue crack propagation rate. Int. J. Fatigue 29 (2007)1751–6.

DOI: 10.1016/j.ijfatigue.2006.12.007

Google Scholar

[2] Zhang J, He X, Du S. The compressive stress effect on fatigue crack growth under tension-compression loading. Int. J. Fatigue 32 (2010)361–7.

DOI: 10.1016/j.ijfatigue.2009.07.008

Google Scholar

[3] Benz C, Sander M. Fatigue crack growth testing at negative stress ratios: Discussion on the comparability of testing results. Fatigue Fract. Eng. M. Article in press. DOI: 10. 1111/ffe. 12082.

DOI: 10.1111/ffe.12082

Google Scholar

[4] Silva F. Fatigue crack propagation after overloading and underloading at negative stress ratios. Int. J. of Fatigue 29(2007)1757–71.

DOI: 10.1016/j.ijfatigue.2007.03.012

Google Scholar

[5] Petersen DR et al. Deceleration and Acceleration of Crack Propagation after an Overload under Negative Baseline Stress Ratio. J. Test. Eval 2005; 33(3): 12610.

DOI: 10.1520/jte12610

Google Scholar

[6] Bacila A, Decoopman X, Mesmacque G, Voda M, Serban V. Study of underload effects on the delay induced by an overload in fatigue crack propagation. International Journal of Fatigue 29(2007)1781–7.

DOI: 10.1016/j.ijfatigue.2007.02.002

Google Scholar

[7] Kloster V. Charakterisierung und Validierung des Ermüdungsrissverhaltens bei überwiegend negativen R-Verhältnissen im Hinblick auf eine sichere Bauteilauslegung. Düsseldorf: VDI-Verl; 2012. (in German).

Google Scholar

[8] Sander M., Richard H. A. Automatisierte Ermüdungsrissausbreitungsversuche: Anwendung des Mess- und Steuerungsprogrammes FAMControl. Materialprüfung 46 (2004) 22–6. (in German).

DOI: 10.3139/120.100562

Google Scholar

[9] Sander M, Richard HA. Fatigue crack growth under variable amplitude loading - Part II: analytical and numerical investigations. Fatigue Fract. Eng. M. 29 (2006) 303–19.

DOI: 10.1111/j.1460-2695.2006.00993.x

Google Scholar

[10] Solanki K, Daniewicz SR, Newman JC. Finite element analysis of plasticity-induced fatigue crack closure: an overview. Eng. Fract. Mech. 71(2004)149–71.

DOI: 10.1016/s0013-7944(03)00099-7

Google Scholar

[11] Test Method for Measurement of Fatigue Crack Growth Rates. West Conshohocken, PA: ASTM International; (2008).

Google Scholar