Crystal Plasticity Finite Element Simulations of Polycrystalline Aluminium Alloy under Cyclic Loading

Article Preview

Abstract:

A three-dimensional crystal plasticity (CP) finite element model is developed to reproduce the grain level stress concentration and deformation of polycrystalline aluminium alloy 7075 (AA7075) during fatigue experiments. The grains contained in the model possess the same size and crystallographic orientations obtained from electron back-scatter diffraction experiments. A modified CP constitutive model, which considers the backstress evolution, is employed to describe the mechanical behaviour of AA7075 under cyclic loading. A round-notched specimen from a fatigue test is simulated using the proposed CP model. Convergence studies in terms of mesh density and plastic deformation zone size are carried out to determine the appropriate conditions for the simulation. The simulation results are compared with those obtained using the elasto-plastic model and the CP model without grain morphology. The comparison indicates that with the embedded grain morphology, the proposed model can capture very well the local response induced by the microstructure features, which is vital to the accurate fatigue life prediction of aluminium alloys.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

1609-1614

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Payne, G. Welsh, R.J. Christ Jr, J. Nardiello, J.M. Papazian, Observations of fatigue crack initiation in 7075-T651, Int. J. Fatigue., 32 (2010) 247-255.

DOI: 10.1016/j.ijfatigue.2009.06.003

Google Scholar

[2] D.L. McDowell, Simulation-based strategies for microstructure-sensitive fatigue modeling, Mater. Sci. Eng. A, 468 (2007) 4-14.

Google Scholar

[3] D.L. McDowell, Viscoplasticity of heterogeneous metallic materials, Mat. Sci. Eng. R., 62 (2008) 67-123.

Google Scholar

[4] Y. Huang, A user-material subroutine incorporating single crystal plasticity in the ABAQUS Finite Element Program, in: Mech. Report 178, Harvard University, Cambridge, MA., (1991).

Google Scholar

[5] D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, S. Zaefferer, Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation, Acta Mater., 49 (2001) 3433-3441.

DOI: 10.1016/s1359-6454(01)00242-7

Google Scholar

[6] F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods, WILEY-VCH, (2010).

DOI: 10.1002/9783527631483

Google Scholar

[7] M.R. Bache, F.P.E. Dunne, C. Madrigal, Experimental and crystal plasticity studies of deformation and crack nucleation in a titanium alloy, J. Strain. Anal. Eng., 45 (2010) 391-399.

DOI: 10.1243/03093247jsa594

Google Scholar

[8] F.P.E. Dunne, A.J. Wilkinson, R. Allen, Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal, Int. J. Plasticity., 23 (2007) 273-295.

DOI: 10.1016/j.ijplas.2006.07.001

Google Scholar

[9] A.P. Brahme, K. Inal, R.K. Mishra, S. Saimoto, The backstress effect of evolving deformation boundaries in FCC polycrystals, Int. J. Plasticity., 27 (2011) 1252-1266.

DOI: 10.1016/j.ijplas.2011.02.006

Google Scholar

[10] L. Li, L. Shen, G. Proust, C.K.S. Moy, G. Ranzi, Three-dimensional crystal plasticity finite element simulation of nanoindentation on aluminium alloy 2024, Mater. Sci. Eng. A, 579 (2013) 41-49.

DOI: 10.1016/j.msea.2013.05.009

Google Scholar

[11] D. Kuhlmann-Wilsdorf, The theory of dislocation-based crystal plasticity, Philos. Mag. A, 79 (1999) 955-1008.

DOI: 10.1080/01418619908210342

Google Scholar

[12] C. Robert, N. Saintier, T. Palin-Luc, F. Morel, Micro-mechanical modelling of high cycle fatigue behaviour of metals under multiaxial loads, Mech. Mater., (2012).

DOI: 10.1016/j.mechmat.2012.08.006

Google Scholar

[13] B.Q. Xu, Y.Y. Jiang, A cyclic plasticity model for single crystals, Int. J. Plasticity., 20 (2004) 2161-2178.

DOI: 10.1016/j.ijplas.2004.05.003

Google Scholar

[14] Y. Li, V. Aubin, C. Rey, P. Bompard, Polycrystalline numerical simulation of variable amplitude loading effects on cyclic plasticity and microcrack initiation in austenitic steel 304L, Int. J. Fatigue., 42 (2012) 71-81.

DOI: 10.1016/j.ijfatigue.2011.07.003

Google Scholar

[15] M. Anahid, S. Ghosh, Homogenized constitutive and fatigue nucleation models from crystal plasticity FE simulations of Ti alloys, Part 2: Macroscopic probabilistic crack nucleation model, Int. J. Plasticity., 48 (2013) 111-124.

DOI: 10.1016/j.ijplas.2013.02.008

Google Scholar

[16] E.A. Repetto, M. Ortiz, A micromechanical model of cyclic deformation and fatigue-crack nucleation in fcc single crystals, Acta Mater., 45 (1997) 2577-2595.

DOI: 10.1016/s1359-6454(96)00368-0

Google Scholar

[17] V. Bennett, D. McDowell, Polycrystal orientation distribution effects on microslip in high cycle fatigue, Int. J. Fatigue., 25 (2003) 27-39.

DOI: 10.1016/s0142-1123(02)00057-9

Google Scholar

[18] Y. Guilhem, S. Basseville, F. Curtit, J. -M. Stéphan, G. Cailletaud, Numerical investigations of the free surface effect in three-dimensional polycrystalline aggregates, Comp. Mater. Sci., 70 (2013) 150-162.

DOI: 10.1016/j.commatsci.2012.11.052

Google Scholar

[19] C.A. Sweeney, W. Vorster, S.B. Leen, E. Sakurada, P.E. McHugh, F.P.E. Dunne, The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation, J. Mech. Phys. Solids., 61 (2013) 1224-1240.

DOI: 10.1016/j.jmps.2013.01.001

Google Scholar

[20] K. -S. Zhang, Y. -K. Shi, J.W. Ju, Grain-level statistical plasticity analysis on strain cycle fatigue of a FCC metal, Mech. Mater., 64 (2013) 76-90.

DOI: 10.1016/j.mechmat.2013.05.001

Google Scholar

[21] C.O. Frederick, P.J. Armstrong, A mathematical representation of the multiaxial Bauschinger effect, Mater. High Temp., 24 (2007) 11-26.

DOI: 10.3184/096034007x207589

Google Scholar

[22] E. Marin, P. Dawson, On modelling the elasto-viscoplastic response of metals using polycrystal plasticity, Comput. Method. Appl. M, 165 (1998) 1-21.

DOI: 10.1016/s0045-7825(98)00034-6

Google Scholar

[23] E.B. Marin, On the formulation of a crystal plasticity model, in, Sandia National Laboratories, (2006).

Google Scholar

[24] C.H. Goh, R.W. Neu, D.L. McDowell, Crystallographic plasticity in fretting of Ti-6AL-4V, Int. J. Plasticity., 19 (2003) 1627-1650.

DOI: 10.1016/s0749-6419(02)00039-6

Google Scholar

[25] G.Z. Voyiadjis, P.I. Kattan, Phenomenological evolution-equations for the backstress and spin tensors, Acta Mech., 88 (1991) 91-111.

DOI: 10.1007/bf01170595

Google Scholar

[26] F. Yoshida, A constitutive model of cyclic plasticity, Int. J. Plasticity., 16 (2000) 359-380.

Google Scholar

[27] ABAQUS User's Manual, Version 6. 10, Hibbit, Karlsson and Sorensen Inc., (2011).

Google Scholar

[28] M.E. Fine, S.P. Bhat, A model of fatigue crack nucleation in single crystal iron and copper, Mater. Sci. Eng. A, 468 (2007) 64-69.

DOI: 10.1016/j.msea.2006.09.127

Google Scholar