[1]
J. Payne, G. Welsh, R.J. Christ Jr, J. Nardiello, J.M. Papazian, Observations of fatigue crack initiation in 7075-T651, Int. J. Fatigue., 32 (2010) 247-255.
DOI: 10.1016/j.ijfatigue.2009.06.003
Google Scholar
[2]
D.L. McDowell, Simulation-based strategies for microstructure-sensitive fatigue modeling, Mater. Sci. Eng. A, 468 (2007) 4-14.
Google Scholar
[3]
D.L. McDowell, Viscoplasticity of heterogeneous metallic materials, Mat. Sci. Eng. R., 62 (2008) 67-123.
Google Scholar
[4]
Y. Huang, A user-material subroutine incorporating single crystal plasticity in the ABAQUS Finite Element Program, in: Mech. Report 178, Harvard University, Cambridge, MA., (1991).
Google Scholar
[5]
D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, S. Zaefferer, Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation, Acta Mater., 49 (2001) 3433-3441.
DOI: 10.1016/s1359-6454(01)00242-7
Google Scholar
[6]
F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods, WILEY-VCH, (2010).
DOI: 10.1002/9783527631483
Google Scholar
[7]
M.R. Bache, F.P.E. Dunne, C. Madrigal, Experimental and crystal plasticity studies of deformation and crack nucleation in a titanium alloy, J. Strain. Anal. Eng., 45 (2010) 391-399.
DOI: 10.1243/03093247jsa594
Google Scholar
[8]
F.P.E. Dunne, A.J. Wilkinson, R. Allen, Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal, Int. J. Plasticity., 23 (2007) 273-295.
DOI: 10.1016/j.ijplas.2006.07.001
Google Scholar
[9]
A.P. Brahme, K. Inal, R.K. Mishra, S. Saimoto, The backstress effect of evolving deformation boundaries in FCC polycrystals, Int. J. Plasticity., 27 (2011) 1252-1266.
DOI: 10.1016/j.ijplas.2011.02.006
Google Scholar
[10]
L. Li, L. Shen, G. Proust, C.K.S. Moy, G. Ranzi, Three-dimensional crystal plasticity finite element simulation of nanoindentation on aluminium alloy 2024, Mater. Sci. Eng. A, 579 (2013) 41-49.
DOI: 10.1016/j.msea.2013.05.009
Google Scholar
[11]
D. Kuhlmann-Wilsdorf, The theory of dislocation-based crystal plasticity, Philos. Mag. A, 79 (1999) 955-1008.
DOI: 10.1080/01418619908210342
Google Scholar
[12]
C. Robert, N. Saintier, T. Palin-Luc, F. Morel, Micro-mechanical modelling of high cycle fatigue behaviour of metals under multiaxial loads, Mech. Mater., (2012).
DOI: 10.1016/j.mechmat.2012.08.006
Google Scholar
[13]
B.Q. Xu, Y.Y. Jiang, A cyclic plasticity model for single crystals, Int. J. Plasticity., 20 (2004) 2161-2178.
DOI: 10.1016/j.ijplas.2004.05.003
Google Scholar
[14]
Y. Li, V. Aubin, C. Rey, P. Bompard, Polycrystalline numerical simulation of variable amplitude loading effects on cyclic plasticity and microcrack initiation in austenitic steel 304L, Int. J. Fatigue., 42 (2012) 71-81.
DOI: 10.1016/j.ijfatigue.2011.07.003
Google Scholar
[15]
M. Anahid, S. Ghosh, Homogenized constitutive and fatigue nucleation models from crystal plasticity FE simulations of Ti alloys, Part 2: Macroscopic probabilistic crack nucleation model, Int. J. Plasticity., 48 (2013) 111-124.
DOI: 10.1016/j.ijplas.2013.02.008
Google Scholar
[16]
E.A. Repetto, M. Ortiz, A micromechanical model of cyclic deformation and fatigue-crack nucleation in fcc single crystals, Acta Mater., 45 (1997) 2577-2595.
DOI: 10.1016/s1359-6454(96)00368-0
Google Scholar
[17]
V. Bennett, D. McDowell, Polycrystal orientation distribution effects on microslip in high cycle fatigue, Int. J. Fatigue., 25 (2003) 27-39.
DOI: 10.1016/s0142-1123(02)00057-9
Google Scholar
[18]
Y. Guilhem, S. Basseville, F. Curtit, J. -M. Stéphan, G. Cailletaud, Numerical investigations of the free surface effect in three-dimensional polycrystalline aggregates, Comp. Mater. Sci., 70 (2013) 150-162.
DOI: 10.1016/j.commatsci.2012.11.052
Google Scholar
[19]
C.A. Sweeney, W. Vorster, S.B. Leen, E. Sakurada, P.E. McHugh, F.P.E. Dunne, The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation, J. Mech. Phys. Solids., 61 (2013) 1224-1240.
DOI: 10.1016/j.jmps.2013.01.001
Google Scholar
[20]
K. -S. Zhang, Y. -K. Shi, J.W. Ju, Grain-level statistical plasticity analysis on strain cycle fatigue of a FCC metal, Mech. Mater., 64 (2013) 76-90.
DOI: 10.1016/j.mechmat.2013.05.001
Google Scholar
[21]
C.O. Frederick, P.J. Armstrong, A mathematical representation of the multiaxial Bauschinger effect, Mater. High Temp., 24 (2007) 11-26.
DOI: 10.3184/096034007x207589
Google Scholar
[22]
E. Marin, P. Dawson, On modelling the elasto-viscoplastic response of metals using polycrystal plasticity, Comput. Method. Appl. M, 165 (1998) 1-21.
DOI: 10.1016/s0045-7825(98)00034-6
Google Scholar
[23]
E.B. Marin, On the formulation of a crystal plasticity model, in, Sandia National Laboratories, (2006).
Google Scholar
[24]
C.H. Goh, R.W. Neu, D.L. McDowell, Crystallographic plasticity in fretting of Ti-6AL-4V, Int. J. Plasticity., 19 (2003) 1627-1650.
DOI: 10.1016/s0749-6419(02)00039-6
Google Scholar
[25]
G.Z. Voyiadjis, P.I. Kattan, Phenomenological evolution-equations for the backstress and spin tensors, Acta Mech., 88 (1991) 91-111.
DOI: 10.1007/bf01170595
Google Scholar
[26]
F. Yoshida, A constitutive model of cyclic plasticity, Int. J. Plasticity., 16 (2000) 359-380.
Google Scholar
[27]
ABAQUS User's Manual, Version 6. 10, Hibbit, Karlsson and Sorensen Inc., (2011).
Google Scholar
[28]
M.E. Fine, S.P. Bhat, A model of fatigue crack nucleation in single crystal iron and copper, Mater. Sci. Eng. A, 468 (2007) 64-69.
DOI: 10.1016/j.msea.2006.09.127
Google Scholar