Low-Cycle Fatigue Behavior of TWIP Steel - Effect of Grain Size

Article Preview

Abstract:

The effect of different grain sizes on the fatigue performance of high manganese TWIP steel (Twinning-Induced Plasticity) in the low-cycle fatigue regime was investigated. The average grain sizes in the fine grained condition were 2 5 μm and after heat treatment in the coarse grained condition about 80 μm were obtained. Pronounced twin-dislocation interactions especially in small grains strengthen the steel during monotonic deformation. Twin boundaries act as obstacles for dislocation slip, and thus, further reduce the effective grain size, which affects the fatigue response as well. The samples were monotonically and cyclically deformed at room temperature. The results reveal that the grain size has a significant influence on the mechanical as well as on the cyclic performance. Especially under cyclic loading differences in the resulting stress levels and cyclic stability can be observed. To clarify the microstructure evolution before and after fatigue with different constant strain amplitudes the samples were analyzed by means of transmission electron microscopy (TEM).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

1603-1608

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Bouaziz, S. Allain, C. P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Curr Opin Solid State Mater Sci, 15 (2011) 141-168.

DOI: 10.1016/j.cossms.2011.04.002

Google Scholar

[2] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strenght manganese- TRIP/TWIP steels for high energy absorption purpose, ISIJ International, 3 (2003) 438-446.

DOI: 10.2355/isijinternational.43.438

Google Scholar

[3] O. Grässel, Entwicklung und Charakterisierung neuer TRIP/TWIP Leichtbaustähle auf der Basis Fe-Mn-Al-Si, Papierflieger, Dissertation, Clausthal-Zellerfeld, (2000).

Google Scholar

[4] S. Allain, J. -P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe. Mn-C alloys, Mater. Sci. Eng. A, 387-389 (2004) 158-162.

DOI: 10.1016/j.msea.2004.01.059

Google Scholar

[5] I. Karaman, H. Sehitoglu, H. J. Maier, Y. I. Chumlyakov, Competing mechanisms and modeling of deformation in austenitic stainless steel single crystals with and without nitrogen, Acta Mater. 49 (19) (2001) 3919-3933.

DOI: 10.1016/s1359-6454(01)00296-8

Google Scholar

[6] L. Krüger, L. W. Meyer, U. Brüx, G. Frommeyer, O. Grässel, Stress-deformation behavior of high manganese (Al, Si) TRIP and TWIP steels, J. de Physique IV 110 (2003) 189-194.

DOI: 10.1051/jp4:20020692

Google Scholar

[7] I. Gutierrez-Urrutia, D. Raabe, Grain size effect on strain hardening in twinning-induced plasticity steels, Scripta Materialia, 66 (12) (2012) 992-996.

DOI: 10.1016/j.scriptamat.2012.01.037

Google Scholar

[8] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt. %Mn-0. 6wt. %C TWIP steel, Mater. Sci. Eng. A, 527 (2010) 3552-3560.

DOI: 10.1016/j.msea.2010.02.041

Google Scholar

[9] T. Niendorf, C. Lotze, D. Canadinc, A. Frehn, H. J. Maier, The role of monotonic predeformation on the fatigue performance of a high-manganese austenitic TWIP steel, Mater. Sci. Eng. A, 499 (2009) 518-524.

DOI: 10.1016/j.msea.2008.09.033

Google Scholar

[10] T. Niendorf, F. Rubitschek, H. J. Maier, J. Niendorf, H. A. Richard, A. Frehn, Fatigue crack growth - microstructure relationships in a high-manganese austenitic TWIP steel, Mater. Sci. Eng. A, 527 (2010) 2412-2417.

DOI: 10.1016/j.msea.2009.12.012

Google Scholar

[11] T. Niendorf, F. Brenne, C. Liu, O. Ozcan, In-situ characterization of the damage evolution in thin polyelectrolyte films on TWIP steel substrates, Mater. Sci. Eng. A, 566 (2013) 82-89.

DOI: 10.1016/j.msea.2012.12.086

Google Scholar

[12] O. Bouaziz, S. Allain, C. Scott, Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scripta Materialia, 58 (2008) 484-487.

DOI: 10.1016/j.scriptamat.2007.10.050

Google Scholar

[13] O. Bouaziz, N. Guelton, Modelling of TWIP effect on work-hardening, Mater. Sci. Eng. A, 319-321 (2001) 246-249.

DOI: 10.1016/s0921-5093(00)02019-0

Google Scholar

[14] H. -G. Lambers, C. J. Rüsing, T. Niendorf, D. Geissler, J. Freudenberger, H. J. Maier, On the low-cycle fatigue response of pre-strained austenitic Fe61Mn24Ni6. 5Cr8. 5 alloy showing TWIP effect, IJF, 40 (2012) 51-60.

DOI: 10.1016/j.ijfatigue.2012.01.002

Google Scholar