[1]
O. Bouaziz, S. Allain, C. P. Scott, P. Cugy, D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Curr Opin Solid State Mater Sci, 15 (2011) 141-168.
DOI: 10.1016/j.cossms.2011.04.002
Google Scholar
[2]
G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strenght manganese- TRIP/TWIP steels for high energy absorption purpose, ISIJ International, 3 (2003) 438-446.
DOI: 10.2355/isijinternational.43.438
Google Scholar
[3]
O. Grässel, Entwicklung und Charakterisierung neuer TRIP/TWIP Leichtbaustähle auf der Basis Fe-Mn-Al-Si, Papierflieger, Dissertation, Clausthal-Zellerfeld, (2000).
Google Scholar
[4]
S. Allain, J. -P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe. Mn-C alloys, Mater. Sci. Eng. A, 387-389 (2004) 158-162.
DOI: 10.1016/j.msea.2004.01.059
Google Scholar
[5]
I. Karaman, H. Sehitoglu, H. J. Maier, Y. I. Chumlyakov, Competing mechanisms and modeling of deformation in austenitic stainless steel single crystals with and without nitrogen, Acta Mater. 49 (19) (2001) 3919-3933.
DOI: 10.1016/s1359-6454(01)00296-8
Google Scholar
[6]
L. Krüger, L. W. Meyer, U. Brüx, G. Frommeyer, O. Grässel, Stress-deformation behavior of high manganese (Al, Si) TRIP and TWIP steels, J. de Physique IV 110 (2003) 189-194.
DOI: 10.1051/jp4:20020692
Google Scholar
[7]
I. Gutierrez-Urrutia, D. Raabe, Grain size effect on strain hardening in twinning-induced plasticity steels, Scripta Materialia, 66 (12) (2012) 992-996.
DOI: 10.1016/j.scriptamat.2012.01.037
Google Scholar
[8]
I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt. %Mn-0. 6wt. %C TWIP steel, Mater. Sci. Eng. A, 527 (2010) 3552-3560.
DOI: 10.1016/j.msea.2010.02.041
Google Scholar
[9]
T. Niendorf, C. Lotze, D. Canadinc, A. Frehn, H. J. Maier, The role of monotonic predeformation on the fatigue performance of a high-manganese austenitic TWIP steel, Mater. Sci. Eng. A, 499 (2009) 518-524.
DOI: 10.1016/j.msea.2008.09.033
Google Scholar
[10]
T. Niendorf, F. Rubitschek, H. J. Maier, J. Niendorf, H. A. Richard, A. Frehn, Fatigue crack growth - microstructure relationships in a high-manganese austenitic TWIP steel, Mater. Sci. Eng. A, 527 (2010) 2412-2417.
DOI: 10.1016/j.msea.2009.12.012
Google Scholar
[11]
T. Niendorf, F. Brenne, C. Liu, O. Ozcan, In-situ characterization of the damage evolution in thin polyelectrolyte films on TWIP steel substrates, Mater. Sci. Eng. A, 566 (2013) 82-89.
DOI: 10.1016/j.msea.2012.12.086
Google Scholar
[12]
O. Bouaziz, S. Allain, C. Scott, Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scripta Materialia, 58 (2008) 484-487.
DOI: 10.1016/j.scriptamat.2007.10.050
Google Scholar
[13]
O. Bouaziz, N. Guelton, Modelling of TWIP effect on work-hardening, Mater. Sci. Eng. A, 319-321 (2001) 246-249.
DOI: 10.1016/s0921-5093(00)02019-0
Google Scholar
[14]
H. -G. Lambers, C. J. Rüsing, T. Niendorf, D. Geissler, J. Freudenberger, H. J. Maier, On the low-cycle fatigue response of pre-strained austenitic Fe61Mn24Ni6. 5Cr8. 5 alloy showing TWIP effect, IJF, 40 (2012) 51-60.
DOI: 10.1016/j.ijfatigue.2012.01.002
Google Scholar