[1]
J. A. Nock, Jr.: Aluminum, Properties, PhysicalMetallurgy and Phase Diagrams, p.303, Kent R. Van Horn, ed., American Society for Metals, MetalsPark, Ohio, (1967).
Google Scholar
[2]
R. F. Hanstock, J. Inst. Met. 83 (1954 - 55) 11.
Google Scholar
[3]
T. Broom, J. H. Molineaux and V. N. Whittaker, J. Inst. Met. 84 (1955 - 56) 357.
Google Scholar
[4]
Broom, J. A. Mazza and V. N. Whittaker, J. Inst. Met. 86 (1957 - 58) 17. ., 86.
Google Scholar
[5]
T. Broom, J. A. Mazza and V. N. Whittaker, J. Inst. Met. 86 (1957 - 58) 17.
Google Scholar
[6]
J. B. Clark and A. J. McEvily, Acta Metall. 12 (1964) 1359.
Google Scholar
[7]
E. Orowan, Proc. R. Soc. Lond. A 171 (1939) 0079–0106.
Google Scholar
[8]
I. J. Polmear and I. F. Bainbridge, Philos. Mag. 4 (1959) 1293.
Google Scholar
[9]
C. A. Stubington, Acta Metall. 12 (1964) 931.
Google Scholar
[10]
G. W. Form, Trans. Am. Soc. Met. 52 (1960) 514.
Google Scholar
[11]
C. Laird and G. Thomas, Int. J. Fract. Mech. 3 (1967) 81.
Google Scholar
[12]
T. Broom, J.H. Molineux, V.N. Whittaker, J. Inst. Met. 84 (1956) 357–365.
Google Scholar
[13]
H.D. Chandler, J.V. Bee, Acta Metall. 35 (1987) 2503–2510.
Google Scholar
[14]
A. Farrow, C. Laird, in: W. Yin, S.K. Das, Z. Long (Eds. ), Aluminum Alloys: Fabrication, Characterization and Applications Ii, 2009, p.129–134.
Google Scholar
[15]
A. Farrow, C. Laird, in: W. Yin, S.K. Das, Z. Long (Eds. ), Aluminum Alloys: Fabrication, Characterization and Applications Ii, 2009, p.135–140.
Google Scholar
[16]
A. Farrow, C. Laird, Phil. Mag. 90 (2010) 3549–3566.
Google Scholar
[17]
W.Z. Hana, b, Y. Chena, A. Vinogradovc, C.R. Hutchinsona, Dynamic precipitation during cyclic deformation of an under-aged Al–Cu alloy. Materials Science and Engineering A 528 (2011) 7410– 7416.
DOI: 10.1016/j.msea.2011.06.037
Google Scholar
[18]
R. Djugum, R. Lumley, D. Viano, C. Davidson, 2nd International Conference on Self Healing Materials, Chicaga, IL, USA, (2009).
Google Scholar
[19]
R.N. Lumley, R. O'Donnell, I.J. Polmear, J.R. Griffiths, Mater. Forum 29 (2005) 256–261.
Google Scholar
[20]
R.N. Lumley1, R.G. O'Donnell1, I.J. Polmear3, J.R. Griffiths , Enhanced fatigue resistance by under-aged an Al-Cu-Mg-Ag alloy Materials Forum 29 (2005).
Google Scholar
[21]
J. Grosskreutz , G. Shaw . Critical mechanisms in the development of fatigue cracks in 2024-T4 aluminum. In: Pratt P, editor. Proceedings of fracture 1969, proceedings of the second international conference on fracture. Brighton (UK): Chapman and Hall; 1969. p.620.
Google Scholar
[22]
Morris WL. The effect of intermetallics composition and microstructure on fatigue crack initiation in Al 2219-T851. Metall Trans A (1978); 9A: 1345–8.
DOI: 10.1007/bf02652263
Google Scholar
[23]
Kung C, Fine M. Fatigue crack initiation and microcrack growth in 2024-T4 and 2124-T4 aluminum alloys. Metall Trans A (1979); 10A: 603–10.
DOI: 10.1007/bf02658324
Google Scholar
[24]
R.J.H. Wanhill. Fatigue crack initiation in aerospace aluminium alloys, component and structures. Proceedings of the First International Conference on Self Healing Materials 18-20 April 2007, Noordwijk aan Zee, The Netherlands.
Google Scholar
[25]
F. Ostermann, Metall. Trans., 2 (1971) 2897.
Google Scholar