Residual Fatigue Properties of a 2024-T351 Aluminium Alloy from the Teardown of AIRBUS A320 Wing Panels after Service

Article Preview

Abstract:

This paper reports on investigations on the residual fatigue resistance of a 2024 aluminium alloy of an A320 aircraft at the end of life. The fatigue data (S-N and da/dN curves) are compared with data obtained on a pristine alloy using a similar procedure. The results are analysed on the basis of fracture surfaces observations and of AFGROW fatigue life computations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

621-626

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. G. Harlow and R. P. Wei, Materials ageing and structural reliability, Int. Journ. of Mat. & Product Techn. 16 (2001) 304-316.

Google Scholar

[2] R. A. Everett, Effects of service usage on tensile, fatigue and fracture properties of 7075-T6 and 7178-T6 aluminium alloys, NASA Langley Research Center, Hampton, Va (1975).

Google Scholar

[3] J. N. Scheuring and A. F. Grandt, Mechanical properties of aircraft materials subjected to long periods of service usage, Jour. of Eng. Mat. and Techn. -Trans. of the Asme 119 (1997) 380-386.

DOI: 10.1115/1.2812273

Google Scholar

[4] J. J. Gruff and J. G. Hutcheson, Effects of corrosive environments on fatigue life of aluminium alloys under maneuver spectrum loading, Defense Technical Information Centre (1969).

Google Scholar

[5] F. Menan and G. Henaff, Influence of frequency and waveform on corrosion fatigue crack propagation in the 2024-T351 aluminium alloy in the S-L orientation, Mat. Sc. & Eng.: A 519 (2009) 70-76.

DOI: 10.1016/j.msea.2009.04.058

Google Scholar

[6] F. Menan and G. Henaff, Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024, Int. Journ. of Fat. 31 (2009) 1684-1695.

DOI: 10.1016/j.ijfatigue.2009.02.033

Google Scholar

[7] F. Billy. Vieillissement et propriétés résiduelles de matériaux issus du démantèlement d'avions en fin de vie, PhD., ISAE-ENSMA, Poitiers (2013).

Google Scholar

[8] J. Petit, Some aspects of near-threshold fatigue crack growth: microstructural and environmental effects, Fatigue Crack Growth Tresholds Concepts, TMS, Philadelphia, Pa, D.L. Davidson and S. Suresh Eds, 3-25 (1983).

Google Scholar

[9] C. Laird and G. C. Smith, Crack propagation in high stress fatigue, Phil. Mag. 7 (1962) 847-857.

Google Scholar

[10] R. M. N. Pelloux, Crack Extension by Alternate Shear, Eng. Fract. Mech. 1 (1970) 697-704.

Google Scholar

[11] NASGRO, NASGRO Fracture Mechanics and Fatigue Crack Growth Analysis Software. (2002), NASA, Southwest Research Institute: San Antonio, TX (2002).

Google Scholar

[12] G. I. Nesterenko, V. N. Basov, B. G. Nesterenko, and V. G. Petrusenko, How long time exploitation of the airplanes influences on airplane materials and structures properties, Journal of Machinery and Reliability 4 (2006) 330-337.

Google Scholar