Thermal Cycling Fatigue of Thermal Barrier Coatings - Rig and Experiment Design

Article Preview

Abstract:

Ceramic thermal barrier coatings are used for thermal insulation in gas turbines to protect metallic components from high-temperature degradation. The ceramic coating may, due to its different coefficient of thermal expansion, crack and spall off the metallic component, thus rendering the component unprotected against high-temperature. Thermal cycling rigs of various designs are used to evaluate the durability of thermal barrier coatings. The present paper reports the result from a round robin test including three thermal cycling rigs at different locations. To better understand the influence of rig design on the thermal cyclic lives of thermal barrier coatings, some test parameters, such as the material of the specimen table and the cooling rate, were varied in one of the rigs. Furthermore, two different specimen geometries, rectangular and disc-shaped, were tested. The specimen table material was found to greatly influence the cooling rate of the specimens, more so than variations in the cooling airflow. The rectangular specimens were found to be more sensitive to test setup than the disc-shaped specimens; under certain conditions, the rectangular specimens could be made to fracture from the long side, rather than the short side of the specimen edge, which shortened the thermal cyclic life of the coatings.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

641-646

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Zhao and P. Xiao: Mater. Sci. Forum Vol. 606 (2009), p.1.

Google Scholar

[2] G.W. Goward: Mater. Sci. Technol. Vol. 2 (1986), p.194.

Google Scholar

[3] M.S. Ali, Shenhua Song, and Ping Xiao: J. Mater. Sci. Vol. 37 (2002), p. (2097).

Google Scholar

[4] H. Echsler, V. Shemet, M. Schütze, L. Singheiser, and W.J. Quadakkers: J. Mater. Sci. Vol. 41 (2006), p.1047.

Google Scholar

[5] R. Eriksson, H. Brodin, S. Johansson, L Östergren, and X. -H. Li: Surf. Coat. Technol. Vol. 205 (2011), p.5422.

Google Scholar

[6] M. Gell, E. Jordan, K. Vaidyanathan, K. McCarron, B. Barber, Y. -H. Sohn, and V. K. Tolpygo: Surf. Coat. Technol. Vol. 120-121 (1999), p.53.

Google Scholar

[7] H. Guo, H. Murakami, and S. Kuroda: Mater. Sci. Forum Vol. 546-549 (2007), p.1713.

Google Scholar

[8] J. A. Haynes, M. K. Ferber, W. D. Porter, and E. D. Rigney: Oxid. Met. Vol. 52 (1999), p.31.

Google Scholar

[9] M.Y. He, J.W. Hutchinson, and A.G. Evans: Mater. Sci. Eng., A Vol. 345 (2003), p.172.

Google Scholar

[10] T. Patterson, A. Leon, B. Jayaraj, J. Liu, and Y. H. Sohn: Surf. Coat. Technol. Vol. 203 (2008), p.437.

Google Scholar

[11] N. P. Padture, K. W. Schlichting, T. Bhatia, A. Ozturk, B. Cetegen, E. H. Jordan, M. Gell, S. Jiang, T. D. Xiao, P. R. Strutt, E. Garcia, P. Miranzo, and M. I. Osendi: Acta Mater. Vol. 49 (2001), p.2251.

DOI: 10.1016/s1359-6454(01)00130-6

Google Scholar

[12] U. Schulz, M. Menzebach, C. Leyens, and Y.Q. Yang: Surf. Coat. Technol. Vol. 146-147 (2001), p.117.

Google Scholar

[13] O. Trunova, T. Beck, R. Herzog, R. W. Steinbrech, and L. Singheiser: Surf. Coat. Technol. Vol. 202 (2008), p.5027.

Google Scholar

[14] R.T. Wu, K. Kawagishi, H. Harada, and R.C. Reed: Acta Mater. Vol. 56 (2008), p.3622.

Google Scholar

[15] O. Trunova, P. Bednarz, R. Herzog, T. Beck, and L. Singheiser: Int. J. Mater. Res. Vol. 99 (2008), p.1129.

Google Scholar