[1]
M.K. Kulekci, Magnesium and Its Alloys Applications in Automotive Industry, International Journal of Advanced Manufacturing Technology, 39 (2008) 851-865.
DOI: 10.1007/s00170-007-1279-2
Google Scholar
[2]
I. Polmear, Light Alloys: from Traditional Alloys to Nanocrystals, Butterworth-Heinemann, (2006).
Google Scholar
[3]
Z.B. Sajuri, Y. Miyashita, Y. Hosokai, Y. Mutoh, Effects of Mn Content and Texture on Fatigue Properties of As-Cast and Extruded AZ61 Magnesium Alloys, International Journal of Mechanical Sciences, 48 (2006) 198-209.
DOI: 10.1016/j.ijmecsci.2005.09.003
Google Scholar
[4]
M. Matsuzuki, S. Horibe, Analysis of Fatigue Damage Process in Magnesium Alloy AZ31, Materials Science and Engineering: A, 504 (2009) 169-174.
DOI: 10.1016/j.msea.2008.10.034
Google Scholar
[5]
M. Li, Constitutive Modeling of Slip, Twinning, and Untwinning in AZ31B Magnesium, in, The Ohio State University, (2006).
Google Scholar
[6]
X. Lou, M. Li, R. Boger, S. Agnew, R. Wagoner, Hardening Evolution of AZ31B Mg Sheet, International Journal of Plasticity, 23 (2007) 44-86.
DOI: 10.1016/j.ijplas.2006.03.005
Google Scholar
[7]
L. Wu, S. Agnew, Y. Ren, D. Brown, B. Clausen, G. Stoica, H. Wenk, P. Liaw, The Effects of Texture and Extension Twinning on the Low-Cycle Fatigue Behavior of a Rolled Magnesium Alloy, AZ31B, Materials Science and Engineering: A, 527 (2010).
DOI: 10.1016/j.msea.2010.07.047
Google Scholar
[8]
F. Lv, F. Yang, Q. Duan, Y. Yang, S. Wu, S. Li, Z. Zhang, Fatigue Properties of Rolled Magnesium Alloy (AZ31) Sheet: Influence of Specimen Orientation, International Journal of Fatigue, 33 (2011) 672-682.
DOI: 10.1016/j.ijfatigue.2010.10.013
Google Scholar
[9]
M.G. Lee, R. Wagoner, J. Lee, K. Chung, H. Kim, Constitutive Modeling for Anisotropic/Asymmetric Hardening Behavior of Magnesium Alloy Sheets, International Journal of Plasticity, 24 (2008) 545-582.
DOI: 10.1016/j.ijplas.2007.05.004
Google Scholar
[10]
J. Kim, H. Ryou, D. Kim, W. Lee, S.H. Hong, K. Chung, Constitutive Law for AZ31B Mg Alloy Sheets and Finite Element Simulation for Three-point Bending, International Journal of Mechanical Sciences, 50 (2008) 1510-1518.
DOI: 10.1016/j.ijmecsci.2008.08.004
Google Scholar
[11]
M. Li, X. Lou, J. Kim, R. Wagoner, An Efficient Constitutive Model for Room-temperature, Low-rate Plasticity of Annealed Mg AZ31B Sheet, International Journal of Plasticity, 26 (2010) 820-858.
DOI: 10.1016/j.ijplas.2009.11.001
Google Scholar
[12]
S.B. Behravesh, Fatigue Characterization and Cyclic Plasticity Modeling of Magnesium Spot Joints, in: Mechanical Engineering, University of Waterloo, (2013).
Google Scholar
[13]
O. Cazacu, F. Barlat, A Criterion for Description of Anisotropy and Yield Differential Effects in Pressure-Insensitive Metals, International Journal of Plasticity, 20 (2004) 2027-(2045).
DOI: 10.1016/j.ijplas.2003.11.021
Google Scholar
[14]
R.T. Shield, H. Ziegler, On Prager's Hardening Rule, Zeitschrift für Angewandte Mathematik und Physik, 9 (1958) 260-276.
DOI: 10.1007/bf02033030
Google Scholar
[15]
J. Park, D. Nelson, Evaluation of an Energy-Based Approach and a Critical Plane Approach for Predicting Constant Amplitude Multiaxial Fatigue Life, International Journal of Fatigue, 22 (2000) 23-39.
DOI: 10.1016/s0142-1123(99)00111-5
Google Scholar
[16]
K.O. Lee, S.G. Hong, S.B. Lee, A New Energy-based Fatigue Damage Parameter in life Prediction of High-temperature Structural Materials, Materials Science and Engineering: A, 496 (2008) 471-477.
DOI: 10.1016/j.msea.2008.07.035
Google Scholar
[17]
J. Albinmousa, H. Jahed, S. Lambert, Cyclic Behaviour of Wrought Magnesium Alloy under Multiaxial Load, International Journal of Fatigue, 33 (2011) 1127–1139.
DOI: 10.1016/j.ijfatigue.2011.01.009
Google Scholar
[18]
S. Kwon, K. Song, K. Shin, S. Kwun, Low Cycle Fatigue Properties and an Energy-based Approach for As-extruded AZ31 Magnesium Alloy, Metals and Materials International, 17 (2011) 207-213.
DOI: 10.1007/s12540-011-0404-9
Google Scholar
[19]
S.H. Park, S.G. Hong, B.H. Lee, C.S. Lee, Fatigue Life Prediction of Rolled AZ31 Magnesium Alloy using an Energy-Based Model, International Journal of Modern Physics B, 22 (2008) 5503-5508.
DOI: 10.1142/s0217979208050723
Google Scholar
[20]
Test Report for USAMP AMD904 Task 2. 0. 2 Cosma Tests, in, Cosma Engineering, (2012).
Google Scholar
[21]
J. Al Bin Mousa, Multiaxial Fatigue Characterization and Modeling of AZ31B Magnesium Extrusion, in: Mechanical Engineering Department, University of Waterloo, (2011).
Google Scholar
[22]
H.A. Patel, N. Rashidi, D.L. Chen, S.D. Bhole, A.A. Luo, Cyclic Deformation Behavior of a Super-Vacuum Die Cast Magnesium Alloy, Materials Science and Engineering: A, 546 (2012) 72-81.
DOI: 10.1016/j.msea.2012.03.028
Google Scholar
[23]
USCAR – Phase 2: Method for Modeling and Analyzing Magnesium Joints, in, Cosma International, (2012).
Google Scholar