[1]
A.L. Biro, B.F. Chenelle and D.A. Lados, Processing, microstructure, and residual stress effects on strength and fatigue crack growth properties in friction stir welding: a review, Metall. Mater. Trans. B: Process Metallurgy and Materials Processing Science (2012).
DOI: 10.1007/s11663-012-9716-5
Google Scholar
[2]
R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R 50 (2005) 1-78.
Google Scholar
[3]
Y. Sano, N. Mukai, K. Okazaki and M. Obata, Residual stress improvement in metal surface by underwater laser irradiation, Nucl. Instrum. Methods Phys. Res. B 121 (1997) 432-436.
DOI: 10.1016/s0168-583x(96)00551-4
Google Scholar
[4]
C.S. Montross, T. Wie, L. Ye, G. Clark and Y.W. Mai, Laser shock processing and its effects on microstructure and properties of metal alloys: a review, Int. J. Fatigue 24 (2002) 1021-1036.
DOI: 10.1016/s0142-1123(02)00022-1
Google Scholar
[5]
A.H. Clauer and D.F. Lahrman, Laser shock processing as a surface enhancement process, Key Eng. Mater. 197 (2001) 121-144.
DOI: 10.4028/www.scientific.net/kem.197.121
Google Scholar
[6]
P. Peyre and R. Fabbro, Laser shock processing: a review of the physics and applications, Opt. Quantum Electron. 27 (1995) 1213-1229.
Google Scholar
[7]
Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki and Y. Ochi, Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating, Mater. Sci. Eng. A 417 (2006) 334-340.
DOI: 10.1016/j.msea.2005.11.017
Google Scholar
[8]
O. Hatamleh, J. Lyons and R. Forman, Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints, Int. J. Fatigue 29 (2007) 421-434.
DOI: 10.1016/j.ijfatigue.2006.05.007
Google Scholar
[9]
O. Hatamleh, A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints, Int. J. Fatigue 31 (2009) 974-988.
DOI: 10.1016/j.ijfatigue.2008.03.029
Google Scholar
[10]
P.A. Gaydos and J.L. Dulaney, Automated overlays for laser peening, Int. J. Struct. Integr. 2 (2011) 293-302.
DOI: 10.1108/17579861111162897
Google Scholar
[11]
T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky and Y. Sano, New simplified coupling scheme for the delivery of 20MW Nd: YAG laser pulses by large core optical fibers, Appl. Phys. B 72 (2001) 183-186.
DOI: 10.1007/s003400000462
Google Scholar
[12]
Y. Sano, K. Masaki, T. Gushi and T. Sano, Improvement in fatigue performance of friction stir welded A6061-T6 aluminum alloy by laser peening without coating, Mater. Des. 36 (2012) 809-814.
DOI: 10.1016/j.matdes.2011.10.053
Google Scholar
[13]
Y. Sakino, Y. Sano and Y.C. Kim, Application of laser peening without coating on steel welded joints, Int. J. Struct. Integr. 2 (2011) 332-344.
DOI: 10.1108/17579861111162923
Google Scholar
[14]
Y. Sakino, Y. Sano, R. Sumiya and Y. -C. Kim, Major factor causing improvement in fatigue strength of butt welded steel joints after laser peening without coating, Sci. Technol. Weld. Join. 17 (2013) 402-407.
DOI: 10.1179/1362171812y.0000000022
Google Scholar